LINEAR BALL BUSHING BEARINGS AND COMPONENTS

THOMSON"

2003-2004 Edition

Selection Guide for Inch Size Ball Bushing Bearings

1-800-554-8466 www.thomsonballbushing.com

Mechanical and Electro-Mechanical Product Solutions by Danaher Motion

Danaher Motion engineers, manufactures and markets a select combination of the world's top brands of mechanical and electro-mechanical products. Our principle brands and products include:

- THOMSON industrial, precision and rodless actuators, linear slide tables and systems, ball and lead screws, linear bearings and guides, precision balls, molded products, shafting and integrated solutions
- THOMSON BSA lead screws and precision miniature ball screws
- MICRON gearheads
- HAROWE resolvers
- DELTRAN PT electromagnetic friction and wrap spring clutches and brakes
- SUPERIOR ELECTRIC stepper and servo motors and controls
- SECO AC and DC variable speed drives

Designed to help increase productivity and improve performance, our products are incorporated into new equipment designs as well as machines already in service. From semiconductor assembly, packaging, robotics and industrial automation to medical, fitness and mobile off-highway equipment, our mechanical and electro-mechanical products bring flexibility, precision, efficiency, and reliability to a wide variety of industries.

Beyond our world-class product designs, one of our greatest strengths is our commitment to the Danaher Business System (DBS), which is comprised of a unique set of robust, repeatable processes that help us constantly improve the operational efficiency of our factories. Based upon the time-tested methods of Kaizen, the DBS is a team-based mindset that continuously and aggressively eliminates waste in every facet of our business operations. Furthermore, the DBS focuses the entire organization on breakthrough objectives that culminate in maintainable, results-oriented business processes, which, in turn, create advantages for our customers in the areas of quality, delivery and performance.

At Danaher Motion, we bring together best-in-class products, unsurpassed customization expertise, and innovative solutions to significantly improve and revolutionize the way things move. We are the experts in motion control. In short, Danaher Motion offers more choices, more application expertise and more integrated solutions than anyone else in the market.

Website: www.DanaherLinear.com

THOMSON
THOMSON BSA

MICRON

Harowe

Deltran PT

Superior
Electric

Seco
ACIDC Drives

General Product Overvie	ew	2-6
	Super Smart	
	Super Smart	
	Super Ball Bushing* Bearings37-65	
	Super Ball Bushing37-65 Pillow Blocks	
	Precision Steel Ball Bushing*67-93 Bearings	
1	Precision Steel Ball Bushing67-93 Pillow Blocks	
	XR Extra Rigid Ball Bushing95-101 Bearings	
	XR Extra Rigid Ball Bushing95-101 Pillow Blocks	
	RoundWay* Linear Roller Bearings103-115	
	FluoroNyliner* Bushing Bearings117-125	

			(Configu	ration	Load Capacity Range
			Single	Twin	Adjustable	lb _f
	Super Smart Ball E	Bushing* Bearings				
	Closed Type	(Pages 7-17)	•		•	265 to 3880
	Open Type	(Pages 24-29)	•		•	360 to 3880
	Super Smart Ball E	Bushing Pillow Blocks				
0000	Closed Type	(Pages 18-23)	•	•	•	265 to 7760
	Open Type	(Pages 30-35)	•	•	•	360 to 7760
	Super Ball Bushing	g* Bearings				
	Closed Type	(Pages 37-49)	•	•	•	35 to 3000
	Open Type	(Pages 54-61)	•		•	180 to 2350
	Super Ball Bushing	g Pillow Blocks				
	Closed Type	(Pages 50-53)	•	•	•	60 to 4000
	Open Type	(Pages 62-65)	•	•	•	180 to 3120
_	Precision Steel Ba	II Bushing Bearings				
	Closed Type	(Pages 67-79, 82-85)	•			7 to 5000
	Open Type	(Pages 86-91)	•		•	60 to 3800
	Precision Steel Ba	II Bushing Pillow Blocks				
	Closed Type	(Pages 80-81)	•		•	85 to 1100
	Open Type	(Pages 92-93)	•		•	60 to 860
	XR* Extra Rigid Ba	all Bushing Bearings				
	Open Type	(Pages 95–99)	•			4500 to 10000
	XR Extra Rigid Bal	l Bushing Pillow Blocks				
	Open Type	(Pages 100-101)	•			4500 to 10000
	RoundWay* Linear	Roller Bearings				
	Single Type	(Pages 103-113)	•		•	970 to 24000
	Dual Type	(Pages 114-115)	•		•	1370 to 35000
	FluoroNyliner* Bus	shing Bearings				
	Bearings	(Pages 117-119)	•		•	300 to 12500
	Pillow Blocks	(Pages 120-123)	•		•	300 to 12500
	Accessories					
	Retaining Rings	(Page 127)	•		•	
	Seals and Wipers	(Pages 128-129)	•		•	
	Resilient Mounts	(Page 130)	•		•	

Integral	Corrosion					Siz	ze an	d Ava	ilabi	lity					
Seals	Resistance	1/8	3/16	1/4	3/8	1/2	5/8	3/4	1	11/4	11/2	2	21/2	3	4
•	•					•	•	•	•	•	•				
•	•					•	•	•	•	•	•				
•	•					•	•	•	•	•	•				
•	•					•	•	•	•	•	•				
•	•		•	•	•	•	•	•	•	•	•	•			
•	•					•	•	•	•	•	•	•			
•	•			•	•	•	•	•	•	•	•	•			
•	•					•	•	•	•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•					•	•	•	•	•	•	•	•	•	•
•	•					•		•	•	•	•	•			
•	•					•		•	•	•	•	•			
•	•											•		•	
•	•											•		•	
•	•					•			•		•	•		•	
•	•					•			•		•	•		•	
•	•			•	•	•	•	•	•	•	•	•			
•	•			•	•	•	•	•	•	•	•	•			
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				•											

Thomson Linear Motion ComponentsThe RoundRail* Advantage...

Super Smart Ball Bushing* Bearings

Thomson Super Smart Ball Bushing Bearings represent a major advancement for Linear bearing technology, worldwide.

This new patented self-aligning linear bearing provides twice the load carrying capacity or eight times the travel life of the industry standard Thomson Super Ball Bushing* bearing. This dramatic increase in load capacity allows the use of less expensive drive motors, linkages, gears and ball screws. The unique Super Smart design allows the bearing to maintain its diametrical fit up when installed in housings that are soft or slightly out-of-round. Super Smart bearings utilize the RoundRail Advantage that eliminates the need for derating factors commonly used with linear guides. The new bearings are called "Smart" because their universally self-aligning, double-track design incorporates engineering concepts that literally render old style conventional bearings obsolete. Available in inch and metric sizes from over 1800 distributors worldwide. (See Page 16)

Super Smart Ball Bushing Pillow Blocks

Thomson Super Smart Ball Bushing Pillow Blocks available in closed, adjustable and open styles in both single and twin versions.

To minimize installation time and cost, the Super Smart Ball Bushing bearing can be ordered factory-installed in an industry standard single or twin pillow block. The closed type pillow block is used in end supported applications for spanning or bridging a gap. The open style is used in continuously supported applications when maximum rigidity and stiffness is required. Each Super Smart Pillow block is complete with integral double acting seals which keep out contaminants, retain lubrication and maximize bearing life. Since each Pillow Block is dimensionally interchangeable with the industry standard Thomson Super Ball Bushing Pillow Block, system performance improvements can be realized immediately. All Pillow Blocks are available and in stock from over 1800 authorized distributors worldwide (See Page 18)

Super Ball Bushing Bearings

Industry standard self-aligning Super Ball Bushing Bearings available in twenty three sizes and configurations.

Super Ball Bushing bearings offer three times the load capacity or twenty seven times the life of conventional linear bearings. Industry standard self-aligning Super Ball Bushing bearings ease installation and minimize wear from minor bore misalignment. Super Ball Bushing bearings can achieve speeds up to 10 ft/s and accelerations up to 450 ft/s² without the derating factors commonly found in linear guide products. With a coefficient of friction as low as .001, Super Ball Bushing bearings provide a quick easy replacement for high friction plain bearings. The wear-resistant, engineered-polymer retainers and outer sleeves reduce inertia and noise in critical, high speed applications. Super Ball Bushing bearings are available in both open and closed versions from over 1800 distributors worldwide. (See Page 44)

Website: www.thomsonballbushing.com

Product Overview

...The RoundRail* Advantage- The inherent ability of a RoundRail Ball Bushing* bearing system to accommodate torsional misalignment (caused by inaccuracies in carriage or base machining or by machine deflection) with little increase in stress to the bearing components.

Super Ball Bushing* Bearing Pillow Blocks

Available in closed, adjustable and open styles in both single and twin versions.

Thomson Super Ball Bushing bearings are also available factory installed in single or twin pillow blocks. Super Ball Bushing bearing pillow blocks are provided with integral, double acting seals that keep out contaminants and retain lubrication, maximizing system performance and life. Twin versions provide up to twice the load capacity or eight times the life of single versions, allowing the use of smaller and less expensive drives, motors and ball screws. When replacing v-ways and flat-ways, the Super Pillow Block's low coefficient of friction reduces power consumption and provides important design economies. In stock and available in sizes from 1/4 to 2 inch from over 1800 distributors worldwide. (See Page 50)

Precision Steel Ball Bushing Bearing Products

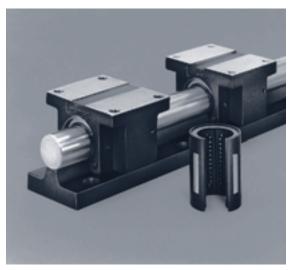
Rigid, Precision Steel Ball Bushing Bearing design eliminates binding and chatter found in high friction plain bearings.

Precision Steel Ball Bushing bearings are available in an open version for continuously supported applications and a closed version for end supported applications. Extra precision and adjustable versions are available for end supported applications requiring higher precision and repeatability. Precision Steel Ball Bushing bearing products are also available factory installed in a self-aligning, malleable iron pillow block minimizing installation time and cost. The all-steel design makes the Precision Steel Ball Bushing bearing product line perfect for replacing plain bearings in high temperature applications. Available in 72 sizes and configurations from over 1800 distributors worldwide. (See Page 74)

Miniature Instrument Ball Bushing Bearings

High Accuracy and Compactness for Instrumentation Level Applications.

The accuracy level and compact size make the Instrument Ball Bushing bearing ideal for small mechanisms or devices that require high repeatability and responsiveness. When replacing high friction plain bearings, the Instrument Ball Bushing bearings' constant low coefficient of friction eliminates stick-slip and provides smooth linear performance. Each Instrument Ball Bushing bearing can be provided with a matched 60 Case* LinearRace* shafting for minimum fit-up, optimizing system performance and accuracy. In stock and available in sizes 1/8, 3/16 and 1/4 inch from over 1800 distributors, worldwide. (See Page 82)


Thomson Linear Motion Components The RoundRail* Advantage

Die Set Ball Bushing* Bearings

Available in two accuracy classes and suitable for a variety of industrial applications.

Thomson Die Set Ball Bushing bearings are designed to fit the mounting holes of the punch holder in standard dies. When replacing high friction plain bearings in standard dies, the result is less machine downtime and increased efficiency. With steady state speeds up to 10 ft/s, the Die Set bearing will provide faster cycle times, with improvements in production rates realized immediately. Matched precision ground 60 Case* LinearRace* allows for a close fit-up between the shaft and the LinearRace shafting and bearing providing critical die alignment. When normal machine service requires bearing replacement, the Die Set bearing can be removed by simply unbolting the toe clamps. Available in 1, 11/4, 11/2 and 2 inch sizes from over 1800 distributors worldwide. (See Page 84)

XR* Ball Bushing Bearing Products

High load capacity and rigidity combined with the RoundRail Advantage.

The XR Ball Bushing bearing provides five times the load capacity or 125 times the life of conventional linear bearings. This increase in bearing performance significantly reduces downtime and maintenance, while increasing machine reliability. When replacing v-ways and flat-ways, XR Ball Bushing bearings allow travel speeds up to 5 ft/s and accelerations up to 225 ft/s² without a sharp increase in power consumption. XR Ball Bushing bearings also provide three times the rigidity of conventional Ball Bushing bearings reducing deflection in critical machining applications. Pillow Blocks are available with factory installed XR Ball Bushing bearings and integral seals. 60 Case LinearRace shafting available premounted on standard extra rigid LinearRace support rails. Available in 2, 3 and 4 inch sizes from over 1800 distributors worldwide. (See Page 98)


RoundWay* Linear Roller Bearings

Low friction roller bearings with up to 20 times the load capacity of conventional linear bearings.

These patented, self-aligning linear roller bearings have over 20 times the load capacity of a conventional linear ball bearing. This dramatic increase in bearing load capacity allows designers to optimize system compactness and minimize hardware costs. Combining the self-aligning feature with the RoundRail Advantage minimizes installation time and assures trouble-free operation. RoundWay and RoundWay II bearings can achieve operating speeds up to 10 ft/s without the derating factors commonly seen with linear guides. When normal machine maintenance is required, RoundWay bearings can be quickly and cost-effectively replaced, without scrapping the entire system, a major problem when servicing some linear guides. RoundWay bearings are available from over 1800 authorized distributors worldwide. (See Page 110)

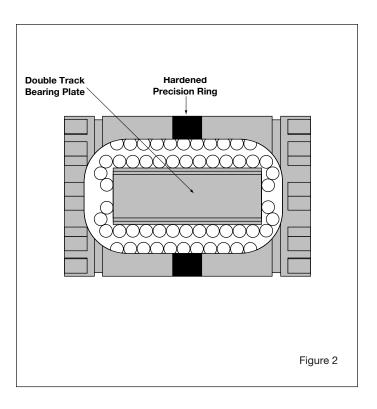
/T/THOMSON

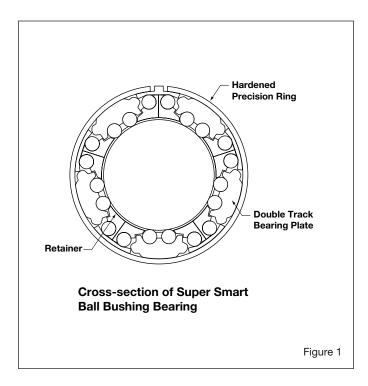
Super Smart Ball Bushing Bearing Products

Thomson Super Smart Ball Bushing* Bearing products offer:

- up to six times the load capacity or 216 times the travel life of conventional linear bearings.
- twice the load capacity or eight times the travel life of industry standard Thomson Super Ball Bushing* bearings.
- a precision super finished, dual track bearing plate for optimum system smoothness and performance.
- a universal self-alignment feature, that compensates for misalignment of housing bores and 60 Case* LinearRace* shaft deflection, optimizes load distribution between ball tracks and assures uniform ball loading over the entire length of the bearing plate. Installation time and cost is minimized while bearing performance and life is maximized.

- a technologically advanced design that allows the bearing to maintain its diametrical fit-up when installed in a housing that is slightly out-of-round.
- longer travel life and minimal machine downtime when replacing conventional linear bearings or the industry standard Super Ball Bushing bearing.
- the RoundRail* Advantage combined with universal self-alignment eliminating the need for derating factors commonly required when using linear guides.
- a coefficient of friction as low as .001. This allows the use of smaller less expensive motors, belts, gears and ball screws, when replacing high friction, plain bearings.
- closed and open configurations.
- double lip integral wipers that keep out dirt while retaining lubrication. Travel life is maximized.
- worldwide availability from over 1800 authorized distributors.


Super Smart Ball Bushing Bearing


The new Super Smart Ball Bushing* bearing represents a major advancement in linear bearing technology worldwide. The Super Smart Ball Bushing bearing offers twice the load capacity or eight times the travel life of the industry standard Thomson Super Ball Bushing* bearing. An enormous technological breakthrough, considering the Super Ball Bushing bearing already offers three times the load capacity or twenty-seven times the travel life of conventional linear bearings.

Technologically Advanced Design

The load carrying component of the Super Smart Ball Bushing bearing is the combination of four hardened bearing quality steel components (Figures 1 & 2).

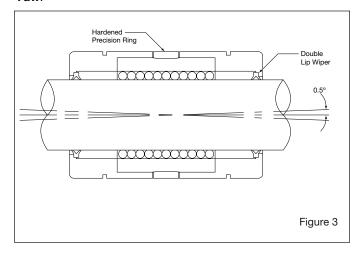
The first component is the steel outer ring, which allows the bearing to maintain its diametrical fit-up even when installed in a housing that is slightly out-of-round. The unique ring design also allows for bearing adjustment and the removal of diametrical clearance. The second component is the precision super finished double track bearing plate that provides twice the load capacity and features universal self-alignment.

The third component is the rolling element. Each Super Smart Ball Bushing bearing utilizes precision ground balls manufactured to the highest quality standards for roundness and sphericity. The result is maximum load capacity, travel life and performance.

The last component is the 60 Case* LinearRace* shaft that acts as the inner race to the Super Smart Ball Bushing bearing. Each 60 Case LinearRace shaft is manufactured to the highest quality standards for roundness, straightness, surface finish and hardness. Roundness is held under eighty millionths of an inch; straightness to .002 inches per foot; surface finish under twelve microinch and hardness between 60-65 HRC. The combination of inner and outer race or 60 Case LinearRace shaft and Super Smart Ball Bushing bearing provides the basis for the RoundRail* Advantage.

The RoundRail Advantage

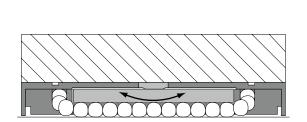
The RoundRail Advantage is the inherent ability of a Super Smart Ball Bushing bearing system to accommodate torsional misalignment (caused by inaccuracies in carriage or base machining or by machine deflection) with little increase in stress to bearing components. Installation time and cost are minimized and system performance is maximized.

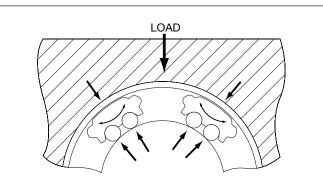


Website: www.thomsonballbushing.com

Super Smart Ball Bushing Bearing

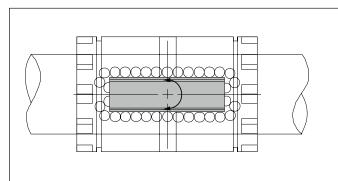
Universal Self-Alignment


The bearing plate of the Super Smart Ball Bushing* bearing is designed with many unique and technologically advanced features. The universal self-alignment feature assures that the Super Smart Ball Bushing bearing will achieve maximum performance regarding load capacity, travel life, smooth operation and coefficient of friction. The three components that make up universal self-alignment are **Rock**, **Roll** and **Yaw**.


Rock

The bearing plate is designed to rock 0.5° about the hardened precision ground outer ring (Figures 3 & 4). This self-aligning feature allows the Super Smart Ball Bushing bearing to absorb misalignment caused by inaccuracies in housing bore alignment or 60 Case* LinearRace* shaft deflection.

This rocking capability provides smooth entry and exit of the precision balls into and out of the load zone assuring a constant low coefficient of friction. By compensating for misalignment, each bearing ball in the load carrying area is uniformly loaded providing maximum load capacity.


Close-up of hardened precision ring, showing how the bearing plate self-aligns (rocks) about the curved surface of the ring.

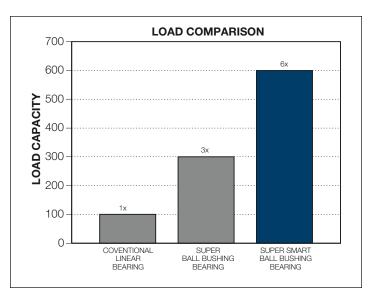
Close-up of double track bearing plates showing how they self-align (**roll**) to evenly distribute the load on each of their two ball tracks. Figure 5

Roll

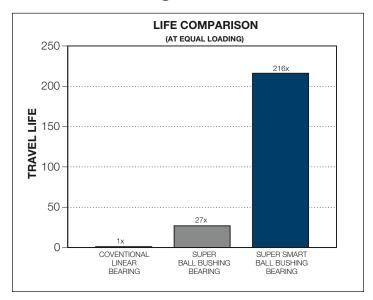
The second key design feature of the Super Smart Ball Bushing bearing plate is its ability to **Roll**. The bearing plate is designed with the radius of its outer surface smaller than the inside radius of the precision outer ring (Figure 5). This allows the bearing plate to compensate for torsional misalignment and evenly distribute the load on each of its two ball tracks. The roll component assures maximum load capacity and travel life.

Bearing plates rotate about their center to prevent skewing relative to the 60 Case LinearRace shaft.

Figure 6


Yaw

The shape formed by the **Rock** and **Roll** features allows the Super Smart Ball Bushing bearing plate to rotate about its center (Figure 6). This allows the Super Smart Ball Bushing bearing to absorb skew caused by misalignment. The result is a constant low coefficient of friction and maximum bearing performance.


Super Smart Ball Bushing Bearing The Super Smart Advantage

Advantage: Load Capacity

The Super Smart Ball Bushing* bearing provides twice the load capacity of the industry standard Thomson Super Ball Bushing* bearing and six times the load capacity of conventional linear bearings.

Advantage: Travel Life

The Super Smart Ball Bushing bearing provides eight times the travel life of the industry standard Thomson Super Ball Bushing bearing and 216 times the travel life of conventional linear bearings.

TTHOMSON™

Super Smart Ball Bushing Bearing Products

Table of Contents

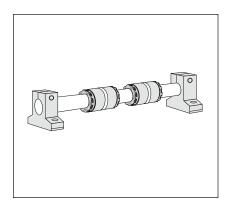
Super	Smart B	Ball Bushing	Bearing Products
	_		

Super Smart Ball Bushing* bearing closed type products have been designed specifically for use in end supported applications, where spanning or bridging a gap is required. End supported products are available in a variety of configuration and sizes. For a complete overview of each Super Smart end support product simply turn to page 12. For Super Smart Ball Bushing bearing end support product specifications see the corresponding pages referenced below.

Product Overview
Part Number Description and Specification
Super Smart Product Specifications
Super Smart Ball Bushing Bearings (Closed Type)
Super Smart Ball Bushing Pillow Blocks (Closed Type)18
Super Smart Ball Bushing Twin Pillow Blocks (Closed Type) 20
Super Smart Ball Bushing Flanged Pillow Blocks22

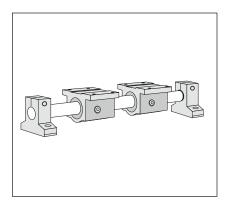
Super Smart Ball Bushing Bearing Products

for Continuously Supported Applications24



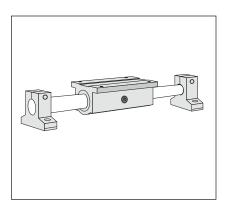
Super Smart Ball Bushing bearing open type products are specifically designed for use in continuously supported applications where rigidity and stiffness is required. Continuously supported products are available in a variety of configurations and sizes. For a complete overview of all Super Smart continuously supported products turn to page 24. For Super Smart Ball Bushing bearing continuously supported product

specifications see the corresponding pages referenced below.	
Product Overview	4
Part Number Description and Specification2	6
Super Smart Product Specifications	
Super Smart Ball Bushing Bearings (Open Type)	8
Super Smart Ball Bushing Pillow Blocks (Open Type)3	0
Super Smart Ball Bushing Twin Pillow Blocks (Open Type) 3	2
Super Smart Ball Bushing Rigid Steel Pillow Blocks (Open Type)3	4



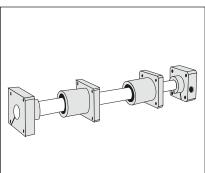
Super Smart Ball Bushing Bearings and Pillow Blocks for End Supported Applications

Super Smart Ball Bushing* Bearings (Closed Type) Features:


- Available in sizes ½ to 1½ inch diameters.
- Load capacity range from 265 to 3,880 lb_f.
- Available with one, two or without integral double lip wipers.
- Can be adjusted to take out diametrical clearance.
- Can be mounted in a customized housing.
- Travel speeds up to 10 ft/s.
- Interchangeable with the industry standard Thomson Super Ball Bushing* bearing.

Super Smart Ball Bushing Pillow Blocks (Closed and Adjustable Type) Features:

- Available in sizes ½ to 1½ inch diameters.
- Load capacity range from 265 to 3,880 lb_f.
- Available with standard integral double acting seals.
- Available with or without adjustment capability.
- Can be adjusted to take out diametrical clearance.

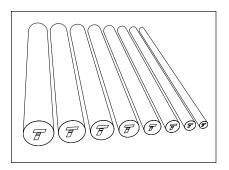

- Easily mounted and secured with four mounting bolts.
- Travel speeds up to 10 ft/s.
- Available with standard lubrication fitting.
- Interchangeable with the industry standard Thomson Super Ball Bushing Pillow Blocks.

Super Smart Ball Bushing Twin Pillow Blocks (Closed and Adjustable Type) Features:

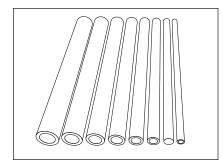
- Available in sizes ½ to 1½ inch diameters.
- Load capacity range from 530 to 7,760 lb_f.
- Available with standard integral double acting seals.
- Available with or without adjustment capability.
- Can be adjusted to take out diametrical clearance.

- Travel speeds up to 10 ft/s.
- Easily mounted and secured with four mounting bolts.
- Available with standard lubrication fitting.
- Interchangeable with the industry standard Thomson Super Ball Bushing Twin Pillow Block.

Page 12

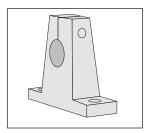

Super Smart Ball Bushing Flanged Single and Twin Pillow Blocks Features:

- Available in sizes ½ and 1½ inch diameters.
- Load capacity range from 265 to 7,760 lb_f.
- Available with standard integral double acting seals.
- Without adjustment capability.
- Can be mounted perpendicular to table surface.
- Easily mounted and secured with four mounting bolts.
- Travel speeds up to 10 ft/s.
- Available with standard lubrication fitting.
- Interchangeable with the industry standard Thomson Super Ball Bushing Flanged Single and Twin Pillow Block.

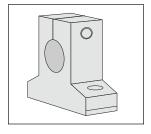

Website: www.thomsonballbushing.com

60 Case LinearRace Shafting for End Supported Applications

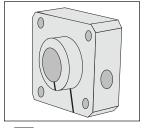
Solid 60 Case* LinearRace* Shafting Features:


- Diameter range between 3/16 and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 60 HRC minimum.
- Surface finish 12 R_a microinch.
- Available in corrosion resistant 440C stainless steel (50 HRC minimum).
- Available with PrePlate* chrome option.
- Standard straightness is .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case Tubular Lite* LinearRace Shafting Features:


- Hollow inner diameter reduces weight and inertia.
- Diameter range between ¾ and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 58 HRC minimum.
- Surface finish 12 R_a microinch.
- Available with PrePlate chrome option.
- Standard straightness is .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

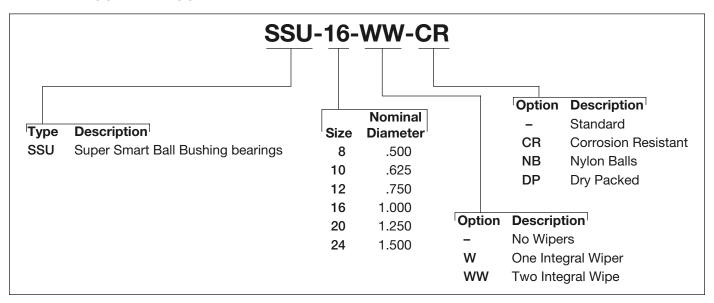
60 Case LinearRace Supports For End Supported Applications


SB 60 Case LinearRace Shafting End Support Block

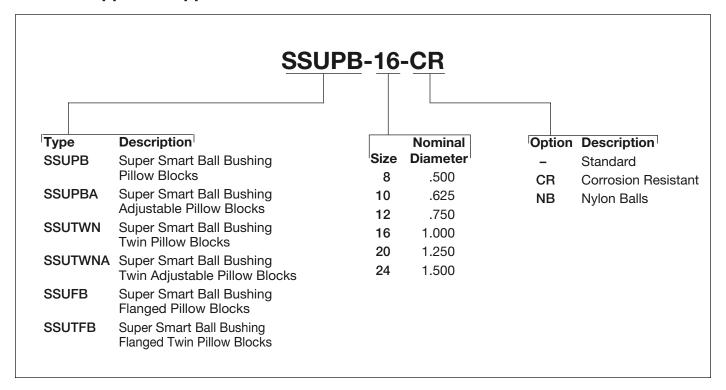
- Size range between 1/4 and 2 inch.
- Easily secured with two mounting bolts.
- Malleable iron alloy for sizes ½ to 2 inch diameter.
- Protected by corrosion resistant coating.
- Light weight, high strength aluminum alloy construction for sizes ¼ and ¾ inch.

ASB Low Profile 60 Case LinearRace Shafting End Support Block Features:

- Size range between 1/4 and 11/2 inch.
- Low profile design.
- Easily secured with two mounting bolts.
- Protected by corrosion resistant anodized coating.
- Light weight, high strength aluminum alloy construction.


FSB Flanged 60 Case LinearRace End Support Block Features:

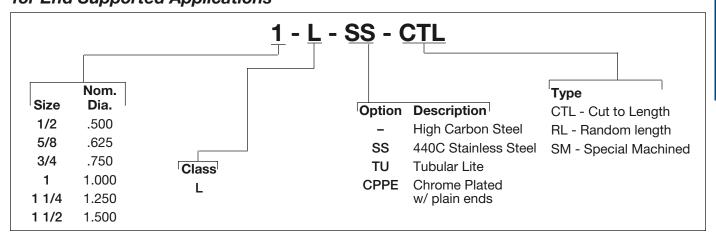
- Available in ½, ¾, 1 and 1¼ inch diameters.
- Flanged mounting surface for easy assembly.
- Easily secured with four mounting bolts.
- Designed specifically for use with Super Smart Flanged Pillow Blocks
- Protected by corrosion resistant coating.
- Light weight, high strength aluminum alloy construction.



Part Number Description and Specification:

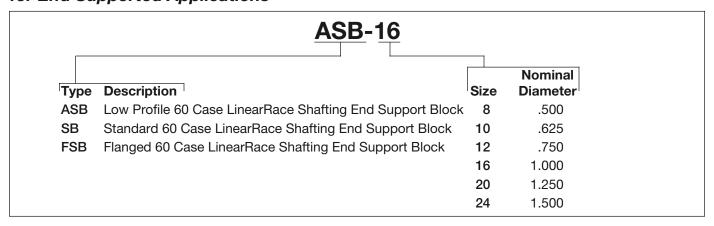
Super Smart Ball Bushing* Bearings (Closed Type) for End Supported Applications

Super Smart Ball Bushing Pillow Blocks (Closed Type) for End Supported Applications



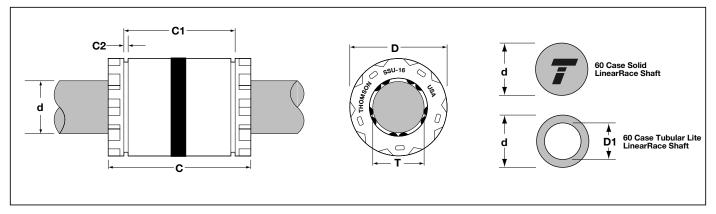
THOMSON

Website: www.thomsonballbushing.com

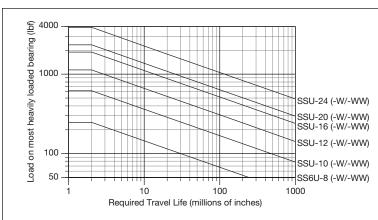

Part Number Description and Specification:

60 Case* LinearRace* Shafting for End Supported Applications

60 Case Line	arRace Shafting	g								
Part Number			Part Number		Part Number		Part Number		Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class L	Max. Length in.	Stainless Steel LinearRace	Max. Length in.	Chrome Plated LinearRace	Max. Length in.	60 Case Tubular Lite LinearRace	Max. Length in.	Chrome Plated Tubular Lite LinearRace	Max. Length in.
1/2 L	.4995/.4990	180	1/2 L SS	180	LRL-10-CP	178				
5/8 L	.6245/.6240	180	5/8 L SS	180	5/8 L CPPE	178				
3/4 L	.7495/.7490	204	3/4 L SS	180	3/4 L CPPE	178	3/4 L TU	180	3/4 L TU CPPE	178
1 L	.9995/.9990	204	1 L SS	180	1 L CPPE	178	1 L TU		1 L TU CPPE	178
1 1/4 L	1.2495/1.2490	204	1 1/4 L SS	180	1 1/4 L CPPE	178		180		
1 1/2 L	1.4994/1.4989	204	1 1/2 L SS	180	1 1/2 L CPPE	180	1 1/2 L TU	180	1 1/2 L TU CPPE	178


60 Case LinearRace Shafting Support Blocks for End Supported Applications

Super Smart Ball Bushing Bearings (Closed Type) for End Supported Applications



Super S	mart Ball	Bushing* B	earings (C	losed Ty	pe) and 60	Case* Linea	rRace* S	hafting			(Dir	mensions i	n inches)
	Part I	Number (2)						Number	Ball Bushing	60 Case LinearRace	60 Case Solid	60 Case Tubular Lite	60 Case Tubular Lite
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	60 Case LinearRace	Nominal Diameter	Length C	C1	C2 min.	of Ball Circuits	Bearing Mass Ib	Minimum Depth of Hardness	LinearRace Mass Ib/in	LinearRace Mass Ib/in	LinearRace ID D1
SS6U-8	SS6U-8-W	SS6U-8-WW	1/2 L	.500	1.250/1.230	1.032.1.012	.050	6	.07	.04	.06	_	_
SSU-10	SSU-10-W	SSU-10-WW	5/8 L	.625	1.500/1.480	1.125/1.095	.055	10	.12	.04	.09	_	_
SSU-12	SSU-12-W	SSU-12-WW	3/4 L	.750	1.625/1.605	1.285/1.255	.055	10	.16	.06	.13	.08	.46/.41
SSU-16	SSU-16-W	SSU-16-WW	1 L	1.000	2.250/2.230	1.901/1.871	.068	10	.29	.08	.22	.16	.62/.56
SSU-20	SSU-20-W	SSU-20-WW	1 1/4 L	1.250	2.625/2.600	2.031/1.991	.068	10	.52	.08	.35	_	_
SSU-24	SSU-24-W	SSU-24-WW	1 1/2 L	1.500	3.000/2.970	2.442/2.402	.086	10	.99	.08	.50	.33	.93/.84

	Part Number	(2)	Working	Recommended	d Housing Bore	60 Case	Ball Bushing Bearing/	60 Case LinearRace Fit Up‡	Dynamic ⁽¹⁾
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SS6U-8	SS6U-8-W	SS6U-8-WW	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	265
SSU-10	SSU-10-W	SSU-10-WW	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	620
SSU-12	SSU-12-W	SSU-12-WW	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	1130
SSU-16	SSU-16-W	SSU-16-WW	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	1900
SSU-20	SSU-20-W	SSU-20-WW	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0001P	2350
SSU-24	SSU-24-W	SSU-24-WW	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	3880

Load/Life Graph (Lines indicate limiting load for given Ball Bushing* bearing)

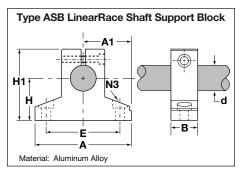
‡P=Preload, C=Clearance

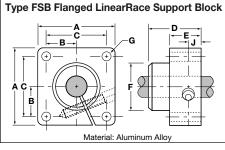
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

Where $K_{\scriptscriptstyle 0}$ can be determined from the Polar Graph to the right.

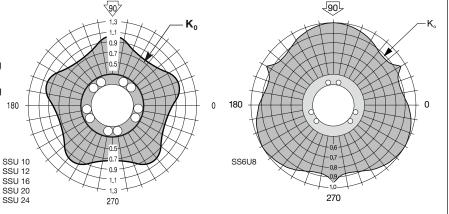

Page 16


60 Case LinearRace Shaft Support Blocks for End Supported Applications

Type SB LinearRace Shaft Support Block H1 H2 Material: Malleable Iron

Type SI	B 60 Case	* Linear	(Dimensions in inche								
Part ⁽²⁾	Nom. LinearRace Dia.	Н	H1	H2	Α	A2	В	E	N3		Mass
No.	ď	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.00	1.63	.25	2.00	.75	.63	1.500	.19	#8	.3
SB-10	.625	1.000	1.75	.31	2.50	.88.	.69	1.875	.22	#10	.4
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.5
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.0
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.0
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.6

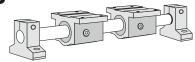
Type ASB	60 Case	([Dimensi	ons in i	nches)					
Part ⁽²⁾	Nom. LinearRace Dia.	Н	H1	Α	A1	В	E	N	N3	
No.	d	±.001			±.001			Hole	Bolt	Mass lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16

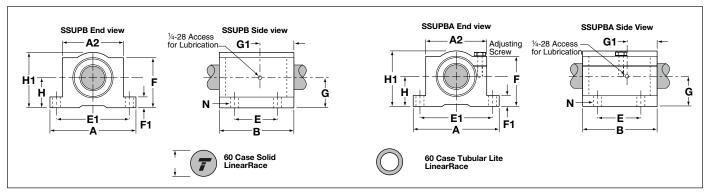


Type FSB	Type FSB Flanged 60 Case LinearRace Shaft End Support Blocks (Dimension														
Part (2)	Nom. LinearRace Dia.	Α	В	С	D	E	F	C	à	J	Mass				
No.	d d			±.010				Hole	Bolt		lb				
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3				
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6				
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8				
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9				

- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- ⁽²⁾ For part number description and specifications see page 14 and 15. For specifications on seals and retaining rings see the Accessories section. Note: For additional technical data, see Engineering Support Appendix.

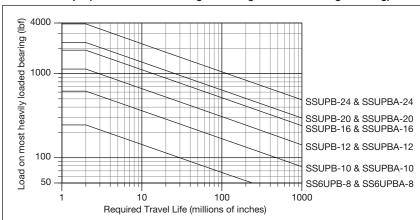
Polar Graphs


The actual Dynamic Load Capacity of a Ball Bushing* bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



Super Smart Ball Bushing Pillow Blocks

(Closed and Adjustable Type) for End Supported Applications



Super Smar	t Ball Bushing* F	Pillow Blocks	(Closed and	d Adjus	table	Types, seal at b	oth ends) and	LinearRace*	(Dimension	ons in inches)
	Part Number ⁽²⁾			н	H1		60 Case	60 Case	60 Case	60 Case
	t Ball Bushing v Block	60.0	Naminal	''		60 Case LinearRace Diameter	LinearRace Minimum	Solid LinearRace	Tubular Lite LinearRace	Tubular Lite LinearRace ID
Fixed	Adjustable	60 Case LinearRace	Nominal Diameter	±.003		d	Depth of Hardness	Mass lb/in	Mass lb/in	D1
SS6UPB-8	SS6UPBA-8	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	_
SSUPB-10	SSUPBA-10	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	_	_
SSUPB-12	SSUPBA-12	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
SSUPB-16	SSUPBA-16	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
SSUPB-20	SSUPBA-20	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	_	_
SSUPB-24	SSUPBA-24	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84

	umber ^② t Ball Bushing	А	A2	В	Е	E1	F	F1	G	G1	NN		Pillow	Dynamic ⁽¹⁾
Pillov	v Block												Block Mass	Capacity
Fixed	,				±.010	±.010					Hole	Bolt	lb	lb _f
SS6UPB-8	SS6UPBA-8	2.00	1.38	1.69	1.000	1.688	1.13	.25	.69	.72	.16	#6	.23	265
SSUPB-10	SSUPBA-10	2.50	1.75	1.94	1.125	2.125	1.44	.28	.88	.83	.19	#8	.51	620
SSUPB-12	SSUPBA-12	2.75	1.88	2.06	1.250	2.375	1.56	.31	.94	.89	.19	#8	.62	1130
SSUPB-16	SSUPBA-16	3.25	2.38	2.81	1.750	2.875	1.94	.38	1.19	1.27	.22	#10	1.24	1900
SSUPB-20	SSUPBA-20	4.00	3.00	3.63	2.000	3.500	2.50	.44	1.50	1.68	.22	#10	2.57	2350
SSUPB-24	SSUPBA-24	4.75	3.50	4.00	2.500	4.125	2.88	.50	1.75	1.86	.28	.25	3.94	3880

Load/Life Graph (Lines indicate limiting load for given Ball Bushing *bearing)

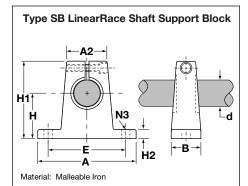
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

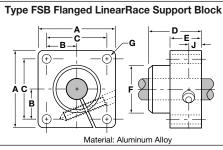
Load on most heavily loaded bearing = maximum applied load/K $_{\mbox{\tiny 0}}.$

Where $K_{\mbox{\tiny 0}}$ can be determined from the Polar Graph to the right.


Page 18

Website: www.thomsonballbushing.com

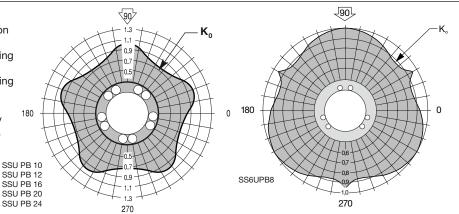
60 Case LinearRace Shaft Support Blocks


for End Supported Applications

Type S	B 60 Case	* Linear	Race*	Shaft E	nd Sup	port Bl	ocks	(Di	mensio	ns in i	nches)
Part ⁽²⁾	Nom. LinearRace Dia.	Н	H1	H2	Α	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.00	1.63	.25	2.00	.75	.63	1.500	.19	#8	.3
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.4
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.5
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.0
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.0
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.6

Type ASB LinearRace Shaft Support Block H1 H2 Material: Aluminum Alloy

Type ASB	60 Case	LinearRa	ice Sha	ft End S	Support B	locks	([Dimensi	ons in i	nches)
Part (2)	Nom. LinearRace Dia.	Н	H1	Α	A1	В	E	N	3	Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16

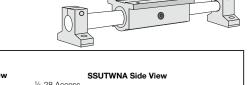


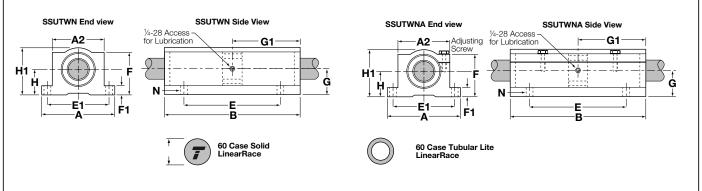
Type FSB	Flanged 6	0 Case	LinearF	Race Sha	ft End S	Suppo	rt Block	cs (Dir	nensio	ns in iı	nches)
Part (2)	Nom. LinearRace Dia.	Α	В	С	D	Е	F	G	à	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing* bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

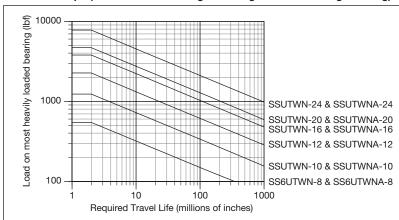




For part number description and specifications see page 14 and 15.
Note: For additional technical data, see Engineering Support Appendix.

Super Smart Ball Bushing Twin Pillow Blocks

(Closed and Adjustable Type) for End Supported Applications



Super Smart	Ball Bushing* Twi	in Pillow Bloc	ks (Closed	Type,	seal a	t both ends) an	d 60 Case* L	inearRace* Sl	naft (Dimensio	ns in inches)
•	Part Number ⁽²⁾ t Ball Bushing			н	H1	60 Case LinearRace	60 Case LinearRace Minimum	60 Case Solid LinearRace	60 Case Tubular Lite LinearRace	60 Case Tubular Lite LinearRace
Fixed	Adjustable	60 Case LinearRace	Nominal Diameter	±.003		Diameter d	Depth of Hardness	Mass lb/in	Mass lb/in	ID D1
SS6UTWN-8	SS6UTWNA-8	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	-
SSUTWN-10	SSUTWNA-10	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	-	-
SSUTWN-12	SSUTWNA-12	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
SSUTWN-16	SSUTWNA-16	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
SSUTWN-20	SSUTWNA-20	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	_	_
SSUTWN-24	SSUTWNA-24	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84

Super Smar	lumber ^② t Ball Bushing v Block	A	A2	В	E	E1	F	F1	G	G1	N	I	Pillow Block Mass	Dynamic ⁽¹⁾ Load Capacity
Fixed	Adjustable				±.010	±.010					Hole	Bolt	lb	lb _f
SS6UTWN-8	SS6UTWNA-8	2.00	1.38	3.50	2.500	1.688	1.13	.25	.59	1.75	.16	#6	.46	530
SSUTWN-10	SSUTWNA-10	2.50	1.75	4.00	3.000	2.125	1.44	.28	.85	2.00	.19	#8	1.02	1240
SSUTWN-12	SSUTWNA-12	2.75	1.88	4.50	3.500	2.375	1.56	.31	.94	2.25	.19	#8	1.24	2260
SSUTWN-16	SSUTWNA-16	3.25	2.38	6.00	4.500	2.875	1.94	.38	1.19	3.00	.22	#10	2.48	3800
SSUTWN-20	SSUTWNA-20	4.00	3.00	7.50	5.500	3.500	2.50	.44	1.50	3.75	.22	#10	5.14	4700
SSUTWN-24	SSUTWNA-24	4.75	3.50	9.00	6.500	4.125	2.88	.50	1.75	4.50	.28	.25	8.08	7760

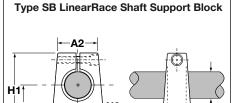
Load/Life Graph (Lines indicate limiting load for given Ball Bushing* bearing)

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

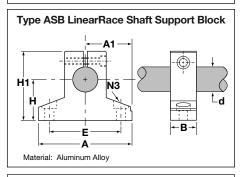
Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

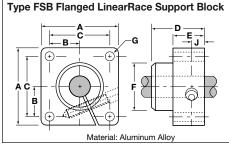
Where K_0 can be determined from the Polar Graph to the right.


Page 20

60 Case LinearRace Shaft Support Blocks

for End Supported Applications

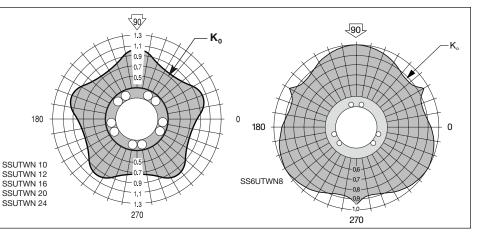

В


Website: www.thomsonballbushing.com

Material: Malleable Iron

Type SI	B 60 Case	* Linear	Race*	Shaft E	nd Sup	port Bl	ocks	(Di	mensic	ns in i	nches)
Part [©]	Nom. LinearRace Dia.	Н	H1	H2	Α	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.00	1.63	.25	2.00	.75	.63	1.500	.19	#8	.3
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.4
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.5
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.0
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.0
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.6

Type ASB	60 Case	LinearRa	ace Sha	ft End S	Support E	locks	([Dimensi	ons in i	nches)
Part (2)	Nom. LinearRace Dia.	Н	H1	Α	A1	В	E	N	3	Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16

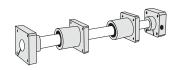


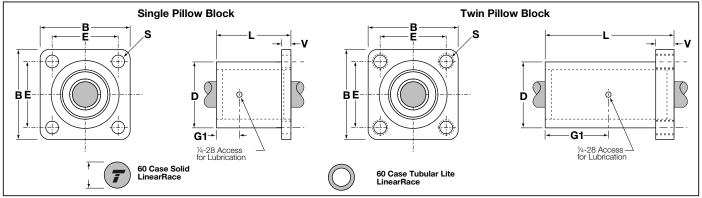
Type FSB	Flanged 6	60 Case	Linear	Race Sh	aft End	Supp	ort Blo	cks (D	imensi	ons in	inch-
Part (2)	Nom. LinearRace Dia.	Α	В	С	D	E	F	C	à	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below. Dynamic load capacity is based on two bearings equally loaded.
 For part number description and specifications see page 14 and 15.

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing* bearing is determined by the orientationof the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

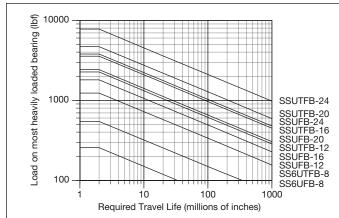




Note: For additional technical data, see Engineering Support Appendix.

Super Smart Ball Bushing Flanged Single and Twin Pillow Blocks

for End Supported Applications



Super Sma	art Ball Bus	hing* F	lang	ed Pill	ow B	locks	s an	d 60	Case'	* LinearRace	* Shaft			(Dimensi	ons in in	ches)
Part Nu	ımber ⁽²⁾		В	E		D	v	G1	s							
Super Smart Ball Bushing Flanged Pillow Block	60 Case LinearRace	Nom. Dia.		±.010	_		·	<u> </u>	Hole Dia.	60 Case LinearRace Diameter d	60 Case LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	60 Case Tubular Light LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace ID D1	Pillow Block Mass Ib	Dyn. ⁽¹⁾ Load Cap. Ib _f
SS6UFB-8	1/2 - L	.500	1.63	1.25	1.69	1.25	.25	.72	.19	.4995/.4990	.06	.04	_	_	23	265
SSUFB-12	3/4 - L	.750	2.38	1.750	2.06	1.75	.38	.89	.22	.7495/.7490	.06	.13	.08	.460/.416	.52	1130
SSUFB-16	1 - L	1.000	2.75	2.125	2.81	2.25	.50	1.27	.28	.9995/.9990	.08	.22	.16	.629/.569	1.04	1900
SSUFB-20	1 1/4 - L	1.250	3.50	2.750	3.63	3.00	.63	1.67	.35	1.2495/1.2490	.08	.35	-	-	ı	2350
SSUFB-24	1 1/2 - L	1.500	4.00	3.125	4.00	3.62	.75	1.86	.41	1.4994/1.4989	.08	.50	.33	.93/.84	_	3880

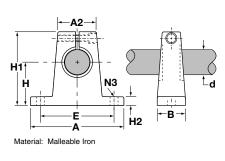
Super Sma	art Ball Bus	hing Fl	ange	d Twir	Pillo	w Bl	ock	s and	d 60 Ca	se LinearR	ace Shaft			(Dimension	ons in in	ches)
Part Nu	ımber ⁽²⁾		В	Е		D	٧	G1	S							
Super Smart Ball Bushing Flanged Twin Pillow Block	60 Case LinearRace	Nom. Dia.		±.010	_	ע	•	ŭi	Thread	60 Case LinearRace Diameter d	60 Case LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	60 Case Tubular Light LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace ID D1	Pillow Block Mass Ib	Dyn. ⁽¹⁾ Load Cap. Ib _f
SS6UTFB-8	1/2 - L	.500	1.63	1.250	3.20	1.25	.90	1.48	1/4-20	.4995/.4990	.06	.04		_	_	530
SSUTFB-12	3/4 - L	.750	2.38	1.750	3.95	1.75	.90	1.98	1/4-20	.7495/.7490	.06	.13	.08	.460/.416	1.05	2260
SSUTFB-16	1-L	1.000	2.75	2.125	5.33	2.25	.90	2.67	⁵ ∕16-18	.9995/.9990	.08	.22	.16	.629/.569	1.95	3800
SSUTFB-20	1 1/4 - L	1.250	3.50	2.750	6.70	3.00	.90	3.35	⁵ ∕16-18	1.2495/1.2490	.08	.35	-			4700
SSUTFB-24	1 1/2 - L	1.500	4.00	3.125	7.50	3.62	1.00	3.75	³ %-16	1.4994/1.4989	.08	.50	.33	.93/.84	_	7760

Load/Life Graph (Lines indicate limiting load for given Ball Bushing* Pillow Block)

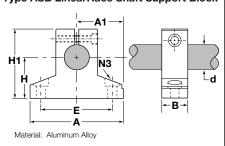
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

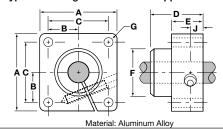
Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/K₀.


Where K₀ can be determined from the Polar Graph to the right.

Website: www.thomsonballbushing.com


60 Case LinearRace Shaft Support Blocks for End Supported Applications

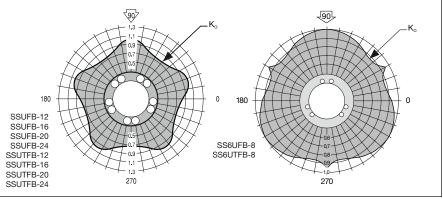
Type SB LinearRace Shaft Support Block


Type S	B 60 Case	* Linear	Race*	Shaft E	nd Sup	port Bl	ocks	(Di	mensio	ns in i	nches)
Part ⁽²⁾	Nom. LinearRace Dia.	Н	H1	H2	Α	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.00	1.63	.25	2.00	.75	.63	1.500	.19	#8	.3
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.5
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.0

Type ASB LinearRace Shaft Support Block

Type ASB	60 Case	LinearRa	ice Sha	ft End S	upport B	Blocks	([Dimensi	nches)	
Part ^②	Nom. LinearRace Dia.	Н	H1	Α	A1	В	E	N	3	Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44

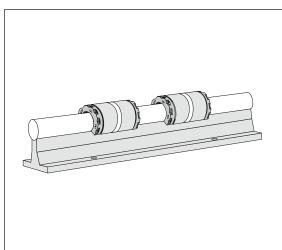
Type FSB Flanged LinearRace Support Block

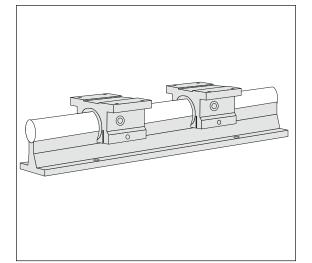

Type FSB	Flanged 6	0 Case	LinearF	Race Sha	ft End S	Suppo	rt Block	cs (Dir	nensio	ns in iı	nches)
Part (2)	Nom. LinearRace Dia.	Α	В	С	D	Е	F	G	ì	J	Mass
No.	d d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below. Dynamic load capacity of Twin Super Smart Flanged Pillow blocks is based on two bearings equally loaded.
- ⁽²⁾ For part number description and specifications see page 14 & 15.

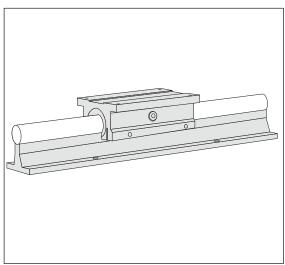
 Note: For additional technical data, see the Engineering Support Appendix.

Polar Graphs


The actual Dynamic Load Capacity of a Ball Bushing* bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.


Super Smart Ball Bushing Bearings and Pillow Blocks (Open Type)

for Continuously Supported Applications

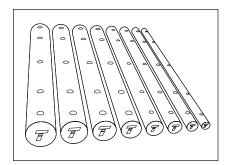

Super Smart Ball Bushing* Bearing (Open Type) Features:

- Available in sizes ½ to 1½ inch diameter.
- Load capacity range from 360 to 3,880 lbf.
- Pull off load capacity range from 250 to 1,750 lb_f.
- Available with one, two or without double lip integral wipers.
- Can be adjusted to take out diametrical clearance.
- Can be mounted in a customized open style pillow block.
- Travel speeds up to 10 ft/s.
- Interchangeable with the industry standard Thomson Super Ball Bushing* bearing (open type).

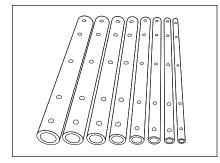
Super Smart Ball Bushing Pillow Blocks (Open Type) Features:

- Available in sizes ½ to 1½ inch diameter.
- Load Capacity range from 360 to 3,880 lbf.
- Pull off load capacity range from 250 to 1,750 lbf.
- Available with standard double acting integral seals.
- Can be adjusted to take out diametrical clearance.
- Easily mounted and secured with four mounting bolts.
- Travel speeds up to 10 ft/s.
- Available with standard lubrication access.
- Interchangeable with the industry standard Thomson Super Ball Bushing Pillow Block (Open Type).

Super Smart Ball Bushing Twin Pillow Blocks (Open Type) Features:


- Available in sizes ½ to 1½ inch diameter.
- Load Capacity range from 720 to 7,760 lbf.
- Pull off load capacity range from 500 to 3,500 lbf.
- Available with standard double acting integral seals.
- Can be adjusted to take out diametrical clearance.
- Easily mounted and secured with four mounting bolts.
- Travel speeds up to 10 ft/s.
- Available with standard lubrication access.
- Interchangeable with the industry standard Thomson Super Ball Bushing Twin Pillow Block (Open Type).

Website: www.thomsonballbushing.com

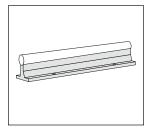

Phone: 1-800-554-8466

60 Case LinearRace Shafting (PreDrilled) for Continuously Supported Applications

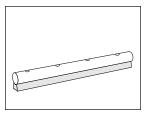
Solid 60 Case* LinearRace* shafting with Mounting Holes Features:

- Radial drilled and tapped holes ready for immediate use with standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between ½ and 4 inch.
- Surface finish 12 R_a microinch.
- Hardness 60 HRC minimum.
- · Roundness 80 millionths of an inch.
- Available in corrosion resistant 440C stainless steel (50 HRC min).
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case Tubular Lite LinearRace shafting with Mounting Holes Features:


- Hollow design reduces weight and inertia.
- Radial drilled and tapped holes ready for immediate use.
- Standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between 1½ and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 58 HRC minimum.
- Surface finish 12 R_a microinch.
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

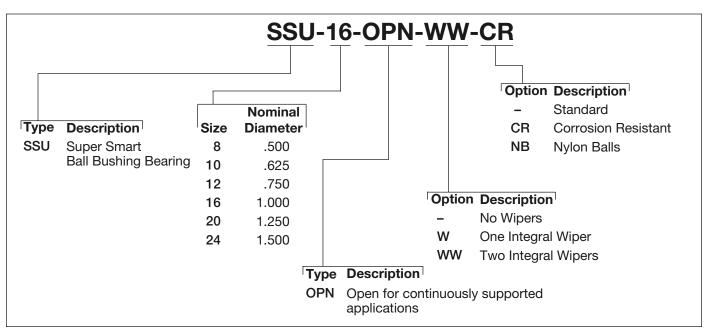
60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications


LSR Low Profile 60 Case LinearRace Support Rail Features:

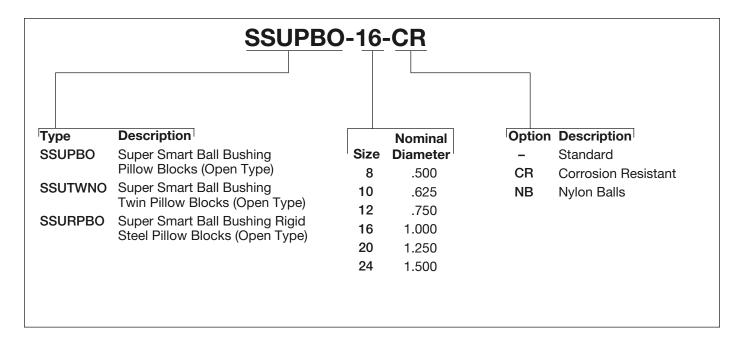
- Diameter range between ½ and 4 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for custom hole spacing.
- Low Profile design.
- Unlimited travel lengths.

SR 60 Case LinearRace Support Rail SRA 60 Case LinearRace Support Rail Assembly Features:

- Diameter range between ½ and 2 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for customized hole spacing.
- Available as a pre-engineered, ready to install assembly.
- Light weight, high strength aluminum alloy rail.
- Unlimited travel lengths.


- LSRA Smart Rail* Assembly Features:
- Diameter range between 5/8 and 11/2 inch.
- Bolt-down-from-the-top mounting.
- Two mounting hole patterns.
- Single piece lengths up to 15 feet long.
- Low profile design.

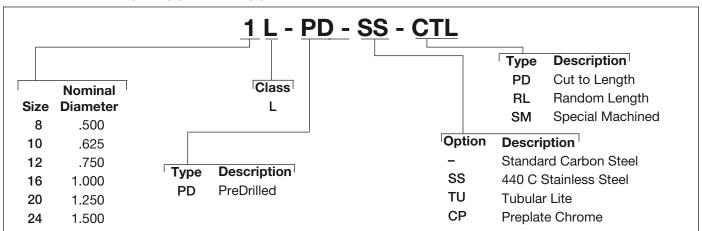
Part Number Description and Specification:


Super Smart Ball Bushing* Bearings (Open type)

for Continuously Supported Applications

Super Smart Ball Bushing Pillow Blocks (Open type)

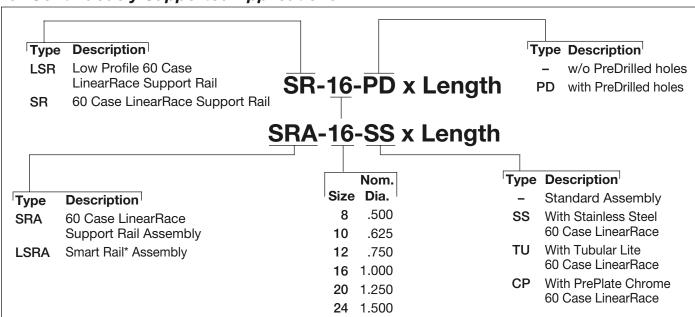
for Continuously Supported Applications


TTHOMSON

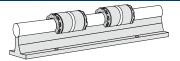
Website: www.thomsonballbushing.com

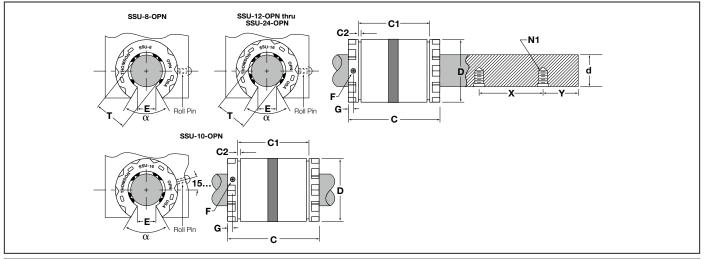
Part Number Description and Specification:

60 Case* LinearRace* Shafting (PreDrilled)

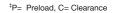

for Continuously Supported Applications

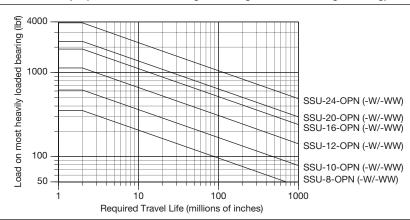
60 Case LinearRace	Shafts					
Part Number			Part Number		Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class L	Max. Length in.	Stainless Steel 60 Case LinearRace	Max. Length in.	Chrome Plated 60 Case LinearRace	Max. Length in.
1/2 L PD	.4995/.4990	168	_		1/2 L PDCPPE	168
5/8 L PD	.6245/.6240	178	5/8 L PD SS	178	1/2 L PDCPPE	178
3/4 L PD	.7495/.7490	178	3/4 L PD SS	178	1/2 L PDCPPE	178
1 L PD	.9995/.9990	178	1 L PD SS	178	1/2 L PDCPPE	178
1 1/4 L PD	1.2495/1.2490	178	1 1/4 L PD SS	178	1/2 L PDCPPE	178
1 1/2 L PD	1.4994/1.4989	178	1 1/2 L PD SS	178	1/2 L PDCPPE	178


60 Case LinearRace Support Rails and Assemblies


for Continuously Supported Applications

Super Smart Ball Bushing Bearings(Open Type) for Continuously Supported Applications





Super Sm	art Ball Bus	hing* Bearings	s (Open T	уре)	and 60 C	ase* Line	earRa	ce* S	hafti	ng				(Di	mensions	in i	inch	es)
	Part Nu	mber [®]							Retenti	on Hole			Ball	60 Case	60 Case		60 Ca	
Without Integral	With one Integral	With two Integral	60 Case	Nom.	Length		C2	Min. Slot Width	Dia.	Loc.	Angle deg		Bushing Bearing Mass		Solid LinearRace Mass		nearR inting	Holes
Wipers	Wiper	Wipers	LinearRace	Dia.	C	C1	min.	Е	F	G	α	Circuits	lb	Hardness	lb/in	Χ	Υ	N1
SSU-8-OPN	SSU-8-OPN-W	SSU-8-OPN-WW	1/2 L PD	.500	1.25/1.23	1.032/1.012	.050	.31	.13	.62	40	6	.07	.04	.06	4	2	6-32
SSU-10-OPN	SSU-10-OPN-W	SSU-10-OPN-WW	5/8 L PD	.625	1.500/1.480	1.125/1.095	.055	.34	.11	.13	30	8	.09	.04	.09	4	2	8-32
SSU-12-OPN	SSU-12-OPN-W	SSU-12-OPN-WW	3/4 L PD	.750	1.625/1.605	1.285/1.255	.055	.41	.14	.13	30	8	.13	.06	.13	6	3	10-32
SSU-16-OPN	SSU-16-OPN-W	SSU-16-OPN-WW	1 L PD	1.000	2.250/2.230	1.901/1.871	.068	.53	.14	.13	30	8	.24	.08	.22	6	3	1/4-20
SSU-20-OPN	SSU-20-OPN-W	SSU-20-OPN-WW	1 1/4 L PD	1.250	2.625/2.600	2.031/1.991	.068	.62	.20	.19	30	8	.43	.08	.35	6	3	5/16-18
SSU-24-OPN	SSU-24-OPN-W	SSU-24-OPN-WW	1 1/2 L PD	1.500	3.000/2.970	2.442/2.402	.086	.74	.20	.19	30	8	.80	.08	.50	8	4	³ %-16

	Part Number®)	Working	Recommended I	lousing Bore Dia.	60 Case	Ball Bushing Bear	ing/LinearRace Fit Up [‡]	- Dynamic(tt)
Without Integral Wipers	With one Integral Wiper	With two Integral Wipers	Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SSU-8-OPN	SSU-8-OPN-W	SSU-8-OPN-WW	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	360
SSU-10-OPN	SSU-10-OPN-W	SSU-10-OPN-WW	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	620
SSU-12-OPN	SSU-12-OPN-W	SSU-12-OPN-WW	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	1130
SSU-16-OPN	SSU-16-OPN-W	SSU-16-OPN-WW	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	1900
SSU-20-OPN	SSU-20-OPN-W	SSU-20-OPN-WW	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0001P	2350
SSU-24-OPN	SSU-24-OPN-W	SSU-24-OPN-WW	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	3880

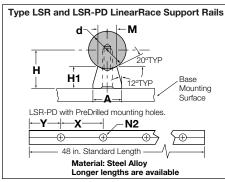
Load/Life Graph (Lines indicate limiting load for given Ball Bushing* bearing)

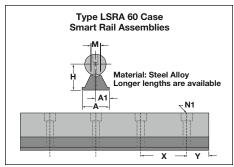
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

Where K_0 can be determined from the Polar Graph to the right.


Page 28


Website: www.thomsonballbushing.com

Super Smart Ball Bushing Bearings

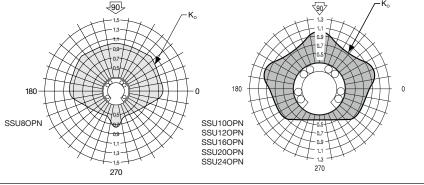
60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LSR and LSR-PD 60 Case* LinearRace* Support Rails (Dimensions i											ches)
LSR Standard Without	LSR-PD Standard w/PreDrilled	Nominal LinearRace Diameter	Н	H1	Α	М	N2	N1	X	Υ	LSR Mass
Holes	Holes	d	±.002				Hole	Bolt			lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	25	.17	#6-32	4	2	.32
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	50	.28	1/4-20	6	3	1.01
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	⁵ /16-18	6	3	1.27
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68

Type LSRA S	Smart Rail* Ass	semblies				(Dir	nensio	ns in in	ches)
Part Nu	ımber ⁽³⁾		Н	Α	A1	Υ	Мо	unting H	oles
Smart Rail Assembly ⁽¹⁾	Smart Rail Assembly ⁽²⁾	LinearRace Diameter	+/-0.002			Std.	X1	X2 ⁽⁴⁾	N1
LSRA10	LSRA10 CR	0.625	0.687	0.45	0.225	1.0	2	3	#5
LSRA12	LSRA12 CR	0.750	0.750	0.51	0.255	1.5	3	4	#6
LSRA16	LSRA16 CR	1.000	1.000	0.69	0.345	1.5	3	4	#10
LSRA20	LSRA20 CR	1.250	1.187	0.78	0.390	1.5	3	6	5/16
LSRA24	LSRA24 CR	1.500	1.375	0.93	0.465	2.0	4	8	3/8

- (1) = Consists of steel rail and high carbon steel LinearRace (HRC 60-65). (2) = Consists of zinc plated steel rail and 440C St. St'l. LinearRace (HRC 50-55).
- (3) = Specify length of assembly and mounting hole spacing (X1 or X2) when ordering. For example, LSRA12 CR X1 x 24.00 inches. (4) = Made to order.

• • • • • • • • • • • • • • • • • • • •	-PD 60 Case LinearRace ills and Assemblies
d	24 in. Standard Length 24 in. Standard Length Waterial: Aluminum Alloy Longer lengths are available

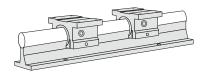

Type S	R/ SR-P	D LinearF	Race S	uppo	rt Ra	ils a	and A	sser	nbli	es	(Dimension	s in	ino	ches)
SR Without	SR-PD With PreDrilled	Assembly With Solid 60 Case	Nom. LinearRace Dia.	H	H1	Α	A1	Ε	М	N	13	LinearRace Mounting Bolt	Χ	Υ	SR Mass
Holes	Holes	LinearRace	d	±.002			±.002			Hole	Bolt	N1			lb/ft
SR-8	SR-8-PD	SRA-8	.50	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.5	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	56	.34	5/16	5/16-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3/s-16 x 2.00	8	4	2.60

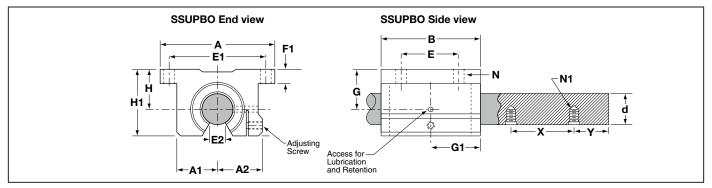
th The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

Standard Without Holes	Standard With Predrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ^(f) in	Maximum Single Piece Length ^(f) in
LSR	LSR-PD	-	48	96
		LSRA	ı	180
SR	SR-PD	SRA	24	72

Polar Graph

The actual Dynamic Load Capacity of a Ball Bushing* bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

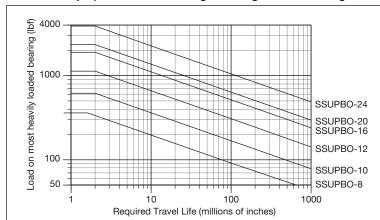




^{**} For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 27. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.

⁽³⁾ For part number description and specifications see page 26 and 27.

Super Smart Ball Bushing Pillow Blocks(Open Type) for Continuously Supported Applications



per Smart Ball E	Bushing* Pillow B	locks (Open	Type) and	60 Cas	se* LinearRace*		(D	imer	sions	in inches
Part Nun Super Smart Ball Bushing	nber ⁽³⁾ 60 Case	Nominal	н	H1	60 Case LinearRace Diameter	60 Case LinearRace Minimum Depth of	60 Case Solid LinearRace Mass	N	Line	Case arRace ng Holes
Pillow Block	LinearRace	Diameter	±.003		d	Hardness	lb/in	X	Υ	N1
SSUPBO-8	1/2 L PD	.500	.687	1.13	.4995/.4990	.04	.06	4	2	6-32
SSUPBO-10	5/8 L PD	.625	.875	1.44	.6245/.6240	.04	.09	4	2	8-32
SSUPBO-12	3/4 L PD	.750	.937	1.56	.7495/.7490	.06	.13	6	3	10-32
SSUPBO-16	1 L PD	1.000	1.187	2.00	.9995/.9990	.08	.22	6	3	1/4-20
SSUPBO-20	1 1/4 L PD	1.250	1.500	2.56	1.2495/1.2490	.08	.35	6	3	⁵ ⁄16-18
SSUPBO-24	1 1/2 L PD	1.500	1.750	2.94	1,4994/1,4989	.08	.50	8	4	³ / ₈ -16

Part Number(3)	A	A1	A2	В	E	E1	E2	F1	G	G1	N	N1	Pillow	Dynamic(††)
Super Smart													Block	Load Capacity
Ball Bushing Pillow Block					±.010	±.010	min.				Hole	Bolt	Mass lb	lb _f
SSUPBO-8	2.00	.69	.75	1.50	1.000	1.688	.31	.25	.69	.69	.16	#6	.23	360
SSUPBO-10	2.50	.88	.94	1.75	1.125	2.125	.34	.28	.88	.88	.19	#8	.41	620
SSUPBO-12	2.75	.94	1.00	1.88	1.250	2.375	.41	.31	.94	.94	.19	#8	.51	1130
SSUPBO-16	3.25	1.19	1.25	2.63	1.750	2.875	.53	.38	1.19	1.32	.22	#10	1.03	1900
SSUPBO-20	4.00	1.50	1.63	3.38	2.000	3.500	.62	.44	1.50	1.69	.22	#10	2.15	2350
SSUPBO-24	4.75	1.75	1.88	3.75	2.500	4.125	.74	.50	1.75	1.88	.28	.25	3.29	3880

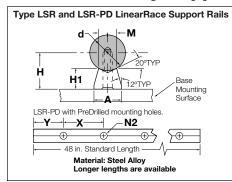
Load/Life Graph (Lines indicate limiting load for given Ball Bushing Pillow Block)

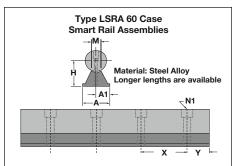
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ K_0 .

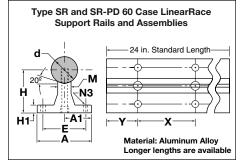
Where K_0 can be determined from the Polar Graph to the right.


Page 30


Website: www.thomsonballbushing.com

Super Smart Ball Bushing Bearings

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

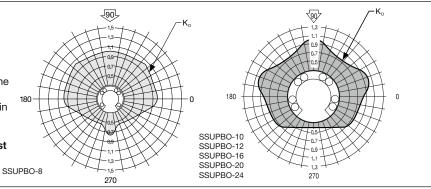


Type LSR	Type LSR and LSR-PD 60 Case* LinearRace* Support Rails (Dimensions in inches)												
LSR Standard Without	LSR-PD Standard w/PreDrilled	Nominal LinearRace Diameter	Н	H1	Α	М	N2	N1	Х	Υ	LSR Mass		
Holes	Holes	d	±.002				Hole	Bolt			lb/ft		
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32		
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49		
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59		
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	50	.28	1/4-20	6	3	1.01		
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	5/16-18	6	3	1.27		
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68		

Type LSRA S	Smart Rail* Ass		(Dir	nensio	ns in in	ches)			
Part Number ⁽³⁾			Н	Α	A1	Υ	Мо	unting H	oles
Smart Rail Assembly ⁽¹⁾	Smart Rail Assembly ⁽²⁾	LinearRace Diameter	+/-0.002			Std.	X1	X2 ⁽⁴⁾	N1
LSRA10	LSRA10 CR	0.625	0.687	0.45	0.225	1.0	2	3	#5
LSRA12	LSRA12 CR	0.750	0.750	0.51	0.255	1.5	3	4	#6
LSRA16	LSRA16 CR	1.000	1.000	0.69	0.345	1.5	3	4	#10
LSRA20	LSRA20 CR	1.250	1.187	0.78	0.390	1.5	3	6	5/16
LSRA24	LSRA24 CR	1.500	1.375	0.93	0.465	2.0	4	8	3/8

(1) = Consists of steel rail and high carbon steel LinearRace (HRC 60–65). (2) = Consists of zinc plated steel rail and 440C St. St'l. LinearRace (HRC 50–55). (3) = Specify length of assembly and mounting hole spacing (X1 or X2) when ordering. For example, LSRA12 CR X1 x 24.00 inches. (4) = Made to order.

Type	Type SR/ SR-PD LinearRace Support Rails and Assemblies (Dimensions in inches)													hes)	
SR Without	SR-PD With PreDrilled	Assembly With Solid 60 Case	Nom. LinearRace Dia.	Н	H1	Α	A1	Е	М	N	N3	LinearRace Mounting Bolt	Χ	Υ	SR Mass
Holes	Holes	LinearRace	d	±.002			±.002			Hole	Bolt	N1			lb/ft
SR-8	SR-8-PD	SRA-8	.50	1.125	.19	1.50	.750	1.00	25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	56	.34	5/16	5/16-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3/s-16 x 2.00	8	4	2.60

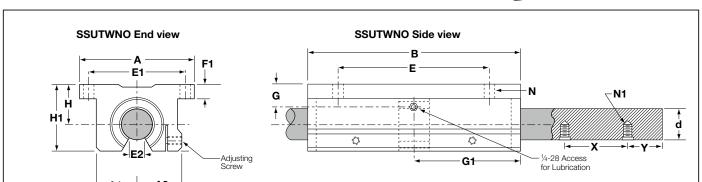

^(#)The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

⁽³⁾ For part number description and specifications see page 26 and 27.

Standard Without Holes	Standard With Predrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ^(†) in	Maximum Single Piece Length ^(f) in
LSR	LSR-PD	-	48	96
		LSRA	_	180
SR	SR-PD	SRA	24	72

Polar Graph

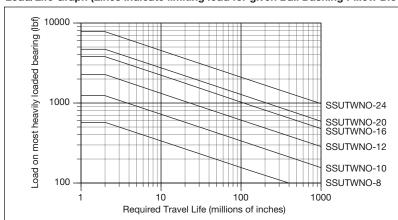
The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page. When using LSRA Smart Rail* assemblies, the dynamic load capacity for side loaded or pull off applications must be de-rated by 75% or .25 times the Dynamic Load Capacity.



⁽f) For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 27. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.

Super Smart Ball Bushing Twin Pillow Blocks

(Open Type)


for Continuously Supported Applications

Super Smart Ball Bu	shing* Twin Pillo	w Blocks (Op	en Type,	seal at	both ends) and 60	Case* LinearRa	ace* (Din	nensi	ons i	n inches)
Part Num Super Smart Ball Bushing	60 Case	Nominal	н	H1	60 Case LinearRace Diameter	60 Case LinearRace Minimum Depth of	60 Case Solid LinearRace Mass		Linea	Case rRace ng Holes
Pillow Block	LinearRace	Diameter	±.003		d	Hardness	lb/in	X	Υ	N1
SSUTWNO-8	1/2 L PD	.500	.687	1.13	.4995/.4990	.04	.06	4	2	6-32
SSUTWNO-10	5/8 L PD	.625	.875	1.44	.6245/.6240	.04	.09	4	2	8-32
SSUTWNO-12	3/4 L PD	.750	.937	1.56	.7495/.7490	.06	.13	6	3	10-32
SSUTWNO-16	1 L PD	1.000	1.187	2.00	.9995/.9990	.08	.22	6	3	1/4-20
SSUTWNO-20	1 1/4 L PD	1.250	1.500	2.56	1.2495/1.2490	.08	.35	6	3	⁵ /16 -18
SSUTWNO-24	1 1/2 L PD	1.500	1.750	2.94	1.4994/1.4989	.08	.50	8	4	3%-16

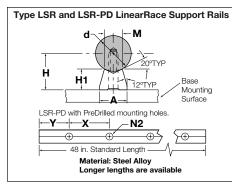
Part Number Super Smart	A	A1	A2	В	E	E1	E2	F1	G	G1	N	1	Pillow Block	Dynamic Load
Ball Bushing Pillow Block					±.010	±.010	min.				Hole	Bolt	Mass lb	Capacity ^{††}
SSUTWNO-8	2.00	.69	.75	3.50	2.500	1.688	.31	.25	.56	1.75	.16	#6	.46	720
SSUTWNO-10	2.50	.88	.94	4.00	3.000	2.125	.34	.28	.67	2.00	.19	#8	.82	1240
SSUTWNO-12	2.75	.94	1.00	4.50	3.500	2.375	.41	.31	.94	2.25	.19	#8	1.02	2260
SSUTWNO-16	3.25	1.19	1.25	6.00	4.500	2.875	.53	.38	1.20	3.00	.22	#10	2.06	3800
SSUTWNO-20	4.00	1.50	1.63	7.50	5.500	3.500	.62	.44	1.50	3.75	.22	#10	4.30	4700
SSUTWNO-24	4.75	1.75	1.88	9.00	6.500	4.125	.74	.50	1.75	4.50	.28	.25	6.88	7760

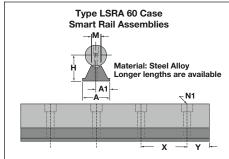
Load/Life Graph (Lines indicate limiting load for given Ball Bushing Pillow Block)

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\mbox{\tiny 0}}$.


Where $\ensuremath{K_{\scriptscriptstyle{0}}}$ can be determined from the Polar Graph to the right.


Website: www.thomsonballbushing.com

Super Smart Ball Bushing Bearings

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

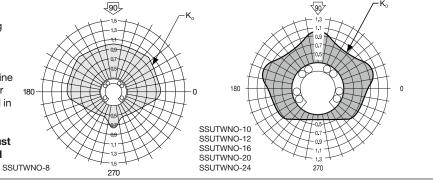
Type LSR	Type LSR and LSR-PD 60 Case LinearRace Support Rails (Dimensions										
LSR Standard Without	LSR-PD Standard w/PreDrilled	Nominal LinearRace Diameter	Н	H1	Α	М	N2	N1	Х	Υ	LSR Mass
Holes	Holes	d	±.002				Hole	Bolt			lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	50	.28	1/4-20	6	3	1.01
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	5/16 -18	6	3	1.27
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68

Type LSRA S	Smart Rail* Ass	semblies				(Dir	nensio	ns in in	ches)
Part Number ⁽³⁾			Н	Α	A1	Υ	Мо	unting H	oles
Smart Rail Assembly ⁽¹⁾	Smart Rail Assembly ⁽²⁾	LinearRace Diameter	+/-0.002			Std.	X1	X2 ⁽⁴⁾	N1
LSRA10	LSRA10 CR	0.625	0.687	0.45	0.225	1.0	2	3	#5
LSRA12	LSRA12 CR	0.750	0.750	0.51	0.255	1.5	3	4	#6
LSRA16	LSRA16 CR	1.000	1.000	0.69	0.345	1.5	3	4	#10
LSRA20	LSRA20 CR	1.250	1.187	0.78	0.390	1.5	3	6	5/16
LSRA24	LSRA24 CR	1.500	1.375	0.93	0.465	2.0	4	8	3/8

(1) = Consists of steel rail and high carbon steel LinearRace (HRC 60–65). (2) = Consists of zinc plated steel rail and 440C St. St'l. LinearRace (HRC 50–55). (3) = Specify length of assembly and mounting hole spacing (X1 or X2) when ordering. For example, LSRA12 CR X1 x 24.00 inches. (4) = Made to order.

	R-PD 60 Case LinearRace ails and Assemblies
d →	24 in. Standard Length
20 ² M	
H 202 N3	
	X
A	Material: Aluminum Alloy Longer lengths are available

Type \$	Type SR/ SR-PD LinearRace Support Rails and Assemblies (Dimensions in inches)														
SR Without	SR-PD With PreDrilled	Assembly With Solid 60 Case	Nom. LinearRace Dia.	Н	H1	Α	A1	Ε	М	NN	13	LinearRace Mounting Bolt	X	Υ	SR Mass
Holes	Holes	LinearRace	d	±.002			±.002			Hole	Bolt	N1			lb/ft
SR-8	SR-8-PD	SRA-8	.50	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	56	.34	⁵ / ₁₆	5/16-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	⁵ ⁄16	3%-16 x 2.00	8	4	2.60

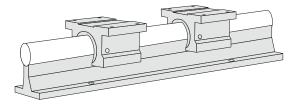

^(†)The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

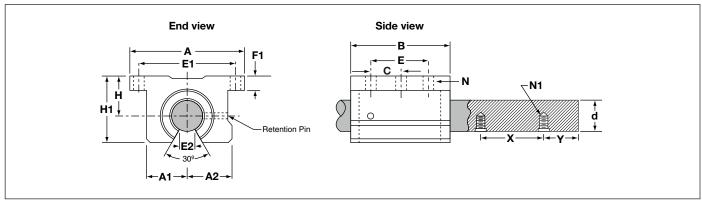
For part number description and specifications see page 26 and 27.

Standard Without Holes	Standard With Predrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ^(f) in	Maximum Single Piece Length ^(f) in
LSR	LSR-PD	-	48	96
		LSRA	-	180
SR	SR-PD	SRA	24	72

Polar Graph

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page. When using LSRA Smart Rail* assemblies, the dynamic load capacity for side loaded or pull off applications must be de-rated by 75% or .25 times the Dynamic Load Capacity.




^(f) For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 27 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.

Super Smart Ball Bushing Rigid Steel Pillow Blocks

(Open Type) for Continuously Supported Applications

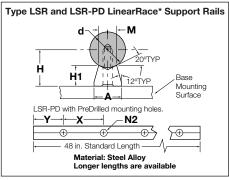
Rigid steel housing and high performance Super Smart Ball Bushing* bearing combine to reduce deflection and cost up to 66%.

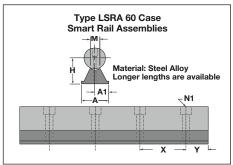
Super Smart Ball Bushing bearing Rigid Steel Pillow Blocks (Open Type, seal at both ends) and 60 Case* LinearRace* shaft (Dimensions in inches)													
Part Number									60 Case	60 Case	60 Case		
Super Smart			H	H1	Α	A1	A2	В	LinearRace shaft	Solid	LinearRace shaft		
Ball Bushing	60 Case								Minimum	LinearRace shaft	Mounting Holes		
Rigid Steel	LinearRace	Nominal							Depth of	Mass	Х	V	N1
Pillow Block	shaft	Diameter	±.003						Hardness	lb/in	^	T	INI
SSURPB012	3/4 L PD	.750	.937	1.56	2.75	.94	1.00	1.88	.06	.13	6	3	#10-32
SSURPB016	1 L PD	1.000	1.187	2.00	3.25	1.19	1.25	2.63	.08	.22	6	3	1/4-20
SSURPB024	1 1/2 L PD	1.500	1.750	2.94	4.75	1.75	1.88	3.75	.08	.50	8	4	³ ⁄ ₈ -16

Part Number Super Smart Ball Bushing bearing	60 Case LinearRace shaft Diameter	E	С	E1	E2	F1	N		Pillow Block Mass	Dynamic(††) Load Capacity
Rigid Steel Pillow Block	d	±.010	±.010	±.010	Min.		Hole	Bolt	lb	lb _f
SSURPB012	.7495/.7490	1.250	0.625	2.375	.43	.31	.19	#8	1.10	1130
SSURPB016	.9995/.9990	1.750	0.875	2.875	.56	.38	.22	#10	2.30	1900
SSURPB024	1.4994/1.4989	2.500	1.250	4.125	.81	.50	.28	.25	7.00	3880

Super Smart Ball Bushing Rigid Steel Pillow Blocks provide:

- Faster settling time... Greater Productivity
- Less deflection ... Greater Accuracy
- Highest load capacity... Smallest envelope
- Longest bearing life... Greater reliability




Website: www.thomsonballbushing.com

Super Smart Ball Bushing Bearings

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LSR	Type LSR and LSR-PD 60 Case* LinearRace* Support Rails (Dimension										
LSR Standard Without	LSR-PD Standard w/Pre-Drilled	Nominal LinearRace shaft Diameter	Н	H1	Α	М	N2	N1	X	Υ	LSR Mass
Holes	Holes	d	±.002				Hole	Bolt			lb/ft
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	50	.28	1/4-20	6	3	1.01
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68

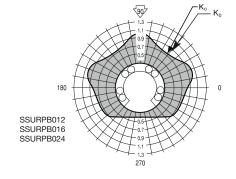
Type LSRA	Smart Rail* Gu	(Dir	(Dimensions in inches)						
Part N	umber ⁽³⁾	LinearRace*	Н	Α	A1	Υ	Мо	oles	
Smart Rail Assembly ⁽¹⁾	Smart Rail Assembly ⁽²⁾	shaft Diameter	+/-0.002			Std.	X1	X2 ⁽⁴⁾	N1
LSRA12	LSRA12 CR	0.750	0.750	0.51	0.255	1.5	3	4	#6
LSRA16	LSRA16 CR	1.000	1.000	0.69	0.345	1.5	3	4	#10
LSRA24	LSRA24 CR	1.500	1.375	0.93	0.465	2.0	4	8	3/8

- (1) = Consists of steel rail and high carbon steel LinearRace (HRC 60–65). (2) = Consists of zinc plated steel rail and 440C St. St'l. LinearRace (HRC 50–55).
- (3) = Specify length of assembly and mounting hole spacing (X1 or X2) when ordering. For example, LSRA12 CR X1 x 24.00 inches. (4) = Made to order.

	-PD 60 Case LinearRace ils and Assemblies
d M H N3	Y Material: Aluminum Alloy Longer lengths are available

	Type SR/ SR-PD LinearRace Support Rails and Assemblies (Dimensions in inches)													hes)		
,	SR Vithout	SR-PD With Pre-Drilled	Assembly With Solid 60 Case LinearRace	Nom. LinearRace shaft Dia.	H	H1	Α	A1	Е	М	N	13	LinearRace Mounting shaft Bolt	X	Υ	SR Mass
Ι,	Holes	Holes	shaft	d	±.002			±.002			Hole	Bolt	N1			lb/ft
	SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
	SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
	SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3/8-16 x 2.00	8	4	2.60

- The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- (f) 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace shaft joints for unlimited travel lengths.


For part number description and specifications see page 26 and 27.

Standard Without Holes	Standard With Pre-Drilled Holes	With Solid 60 Case LinearRace shaft	Standard Single Piece Length ^(†) in	Maximum Single Piece Length ^(†) in
LSR	LSR-PD	_	48	96
		LSRA	-	180
SR	SR-PD	SRA	24	72

Assembly

Polar Graph

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page. When using LSRA Smart Rail* assemblies, the dynamic load capacity for side loaded or pull off applications must be de-rated by 75% or .25 times the Dynamic Load Capacity.

Pick and Place X-Y System

Objective

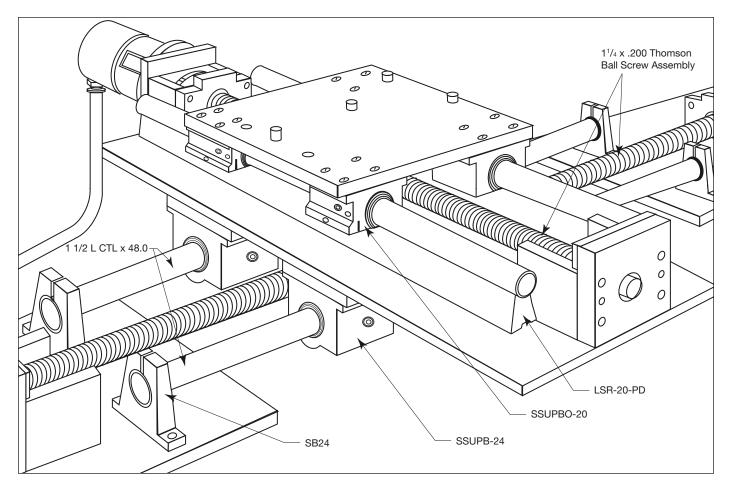
Build an X-Y System that transfers the work piece between two separate machining stations.

Solution

Assemble the X-Y System utilizing Super Smart pillow blocks on end supported 60 Case* LinearRace* for the X-axis and continuously supported 60 Case LinearRace on the Y-axis. Utilize Thomson Ball Screw Assemblies for high speed positioning.

Products Specified

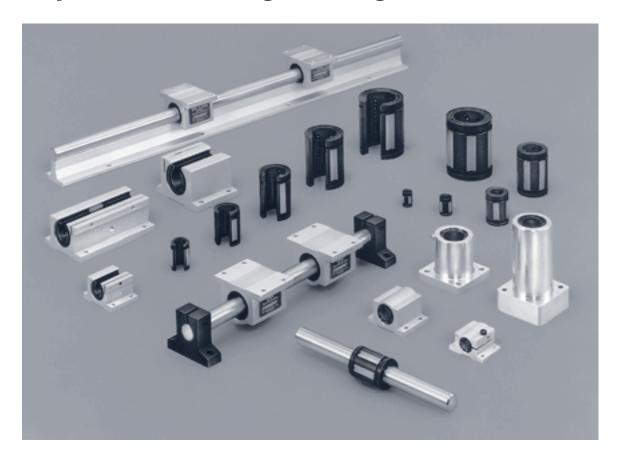
X-axis


- 2 1 ½ L CTL x 48.00 in (60 Case LinearRace)
- 4 SB24 (60 Case LinearRace End Support Blocks)
- 4 SSUPB-24 (Super Smart Ball Bushing* Pillow Blocks)
- 1 11/4 x .200 (Thomson Ball Screw Assembly)

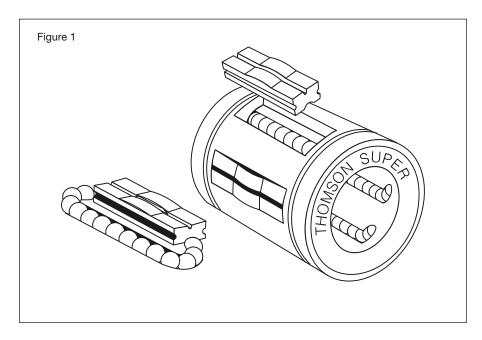
Y-axis

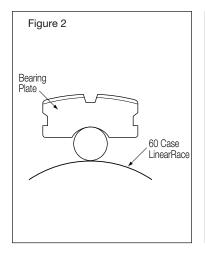
- 2 LSR-20 x 48.00 in (Low Profile 60 Case LinearRace Support Rail)
- 4 SSUPBO-20 (Super Smart Ball Bushing Pillow Blocks)
- 1 11/4 x .200 (Thomson Ball Screw Assembly)
- 2 11/4 L CTL x 48.00 in (60 Case LinearRace)

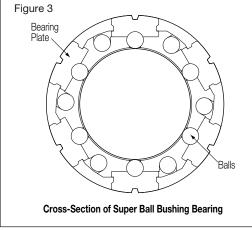
Benefits

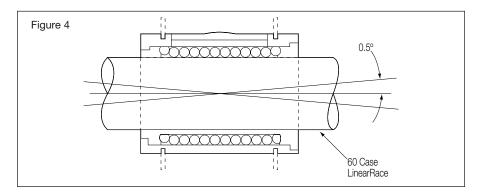

The 60 Case LinearRace and 60 Case LinearRace end support blocks provided an important bridge between machining stations. The Super Smart Ball Bushing pillow blocks and Thomson ball screws provided uninterrupted high speed movement of the work piece. Productivity increased by 200%.

Super Ball Bushing Bearing Products


Thomson Super Ball Bushing* Bearing Products offer:


- a self-aligning capability up to .5° compensating for inaccuracies in base flatness or carriage machining.
- the RoundRail* Advantage combined with the self-aligning feature, eliminating the need for derating factors commonly required for linear guides.
- travel speeds up to 10 ft/s without a reduction in load capacity.
- light weight, wear-resistant, engineeredpolymer retainers and outer sleeves that reduce inertia and noise.
- radially floating bearing plates. When installed in an adjustable housing, the Super Ball Bushing bearing may be adjusted to a specific diametrical fit-up for accurate and repeatable movement.


- a constant coefficient of friction as low as .001.
- the use of smaller, less expensive drive motors, belts, linkages, gears and ball screws, when replacing high friction plain bearings.
- a closed configuration for end supported applications and an open configuration for continuously supported applications.
- ready to install pillow blocks with double acting seals and an access for lubrication. Installation and downtime is minimized.
- availability from over 1800 distributors, worldwide.



Super Ball Bushing Bearing Products

The Super Ball Bushing* bearing has been the industry standard for selfaligning linear bearings for over twenty years. This bearing provides three times the load capacity or 27 times the travel life of conventional linear bearings. This dramatic improvement in bearing performance significantly reduces downtime and maintenance, while increasing machine reliability. Thomson Industries, Inc. invented the Super Ball Bushing bearing with many unique design features. Besides the dramatic increase in load capacity, the Super Ball Bushing bearing is selfaligning, light weight and adjustable with a low coefficient of friction (Figure 1).

Three Times the Load Capacity

The bearing plates are hardened, bearing quality steel with ball conforming grooves (Figure 2). The groove is slightly larger than the ball diameter, providing an optimal area for ball contact. The greater ball to bearing plate contact provides the increase in load capacity or travel life.

Zero Clearance Fit

The bearing plates are also designed to float radially (Figure 3). When the bearing is mounted in an adjustable housing, selected fit-ups can be achieved on the 60 Case* LinearRace* (shaft).

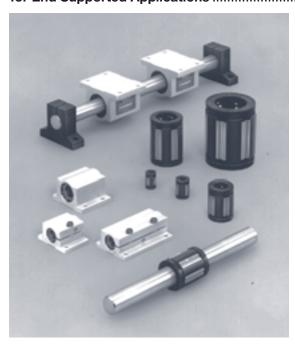
Self-Aligning

The Super Ball Bushing bearing plates pivot .5° about their centers (Figure 4) to assure smooth entry and exit of the precision bearing balls. Each plate aligns itself automatically to compensate for inaccurate housing bore alignment, base flatness or carriage machining. This provides uniform ball loading, smooth ball recirculation and a constant coefficient of friction.

Smooth, Quiet Operation

The Super Ball Bushing bearing's outer sleeve and retainer are made of wear-resistant, low-friction engineering polymer. It reduces inertia and operating noise levels significantly.

Page 38



Super Ball Bushing Bearing Products

Table of Contents

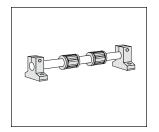
Su	pei		Ball	В	us	h	ir	ng	Be	eai	ring	Pr	oc	luc	ts
_	_	-	_		_	-	_								

for End Supported Applications40

Super Ball Bushing* bearing closed type products are designed specifically for use in end supported applications where spanning or bridging a gap is required. End support products are available in a variety of configurations and sizes. For a complete overview of each Super Ball Bushing end support product turn to page 40. For product specifications see the pages referenced below.

Product Overview	40
Part Number Description and Specification	42
Super Ball Bushing Product Specifications	
Super Ball Bushing Bearings (Closed Type)	44
Sealed Super Ball Bushing Bearings (Closed Type)	46
Super Ball Bushing Cartridge Bearings	48
Super Ball Bushing Pillow Blocks (Closed Type)	50
Super Ball Bushing Twin Pillow Blocks (Closed Type)	52

Super Ball Bushing Bearing Products for Continuously Supported Applications54

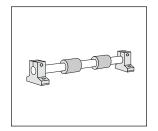


Super Ball Bushing Bearing open type products are specifically designed for use in continuously supported applications, where rigidity and stiffness is required. Continuously supported products are available in a variety of configurations and sizes. For a complete overview of all Super Ball Bushing bearing continuously supported products turn to page 54. For Super Ball Bushing continuously supported product specifications, see the corresponding pages referenced below.

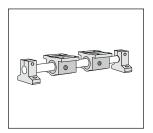
Product Overview54
Part Number Description and Specification56
Super Ball Bushing Product Specifications
Super Ball Bushing Bearings (Open Type)58
Sealed Super Ball Bushing Bearings (Open Type)
Super Ball Bushing Pillow Blocks (Open Type)62
Super Ball Bushing Twin Pillow Blocks (Open Type)

Super Ball Bushing Bearings and Pillow Blocks for End Supported Applications

Super Ball Bushing* Bearings (Closed type) Features:

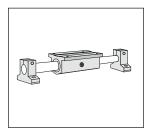

- Available in sizes 3/16 to 2 inch diameter.
- Load Capacity range from 35 to 3,000 lbf.
- Self-aligning in all directions.
- Can be mounted in a custom housing.
- Can be adjusted to take out diametrical clearance.
- Travel speeds up to 10 ft/s.
- Available with corrosion resistant components.

Sealed Super Ball Bushing Bearings (Closed type)


- Integral double acting seals retain lubrication and keep out contamination.
- Available in sizes ½, ¾ and 1 inch nominal diameter.
- Load capacity range from 255 to 1,050 lb_f.
- Self-aligning in all directions.

- Can be adjusted to take out diametrical clearance.
- Can be mounted in a custom housing.
- Travel speeds up to 10 ft/s.
- Available with corrosion resistant components.

Super Ball Bushing Cartridge Bearings Features:


- Available in sizes 1/4, 3/8 and 1/2 inch diameter.
- Can be easily installed into a soft or slightly out-of-round housing.
- Available in both single or twin versions and with or without integral double acting seals.
- Single versions are self-aligning in all directions.
- Twin versions minimize installation time and cost.
- Available with corrosion resistant components.

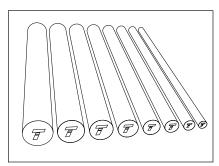
Super Ball Bushing Pillow Blocks (Closed and Adjustable Type) Features:

- Available in sizes 1/4 to 2 inch diameter.
- Load capacity range between 60 and 3,000 lb_f.
- Available with standard integral double acting seals.
- Travel speeds up to 10 ft/s.

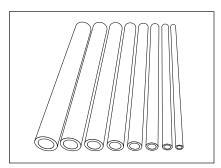
- Available with or without diameter adjustment capability.
- Easily mounted and secured with four mounting bolts (sizes ½ and ½ secured with two mounting bolts).
- Available with a standard lubrication access.

Super Ball Bushing Twin Pillow Blocks (Closed and Adjustable Type) Features:

- Available in sizes 1/4 to 11/2 inch diameter.
- Load capacity range between 120 and 4,000 lb_f.
- Available with standard integral double acting seals.
- Travel speeds up to 10 ft/s.

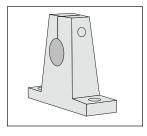

- Available with or without diameter adjustment capability.
- Easily mounted and secured with four mounting bolts.
- Available with a standard lubrication access.

Website: www.thomsonballbushing.com

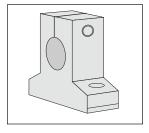

60 Case LinearRace Shafting

for End Supported Applications

60 Case* Solid LinearRace* Shafting Features:


- Diameter range between 3/16 and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 60 HRC minimum.
- Surface finish 12 Ra microinch.
- Available in corrosion resistant 440C stainless steel (50 HRC minimum).
- Available with PrePlate* chrome option.
- Standard straightness is .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case Tubular Lite* LinearRace Shafting Features:


- Hollow inner diameter reduces weight and inertia.
- Diameter range between ¾ and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 58 HRC minimum.
- Surface finish 12 R_a microinch.
- Available with Preplate chrome option.
- Standard straightness is .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

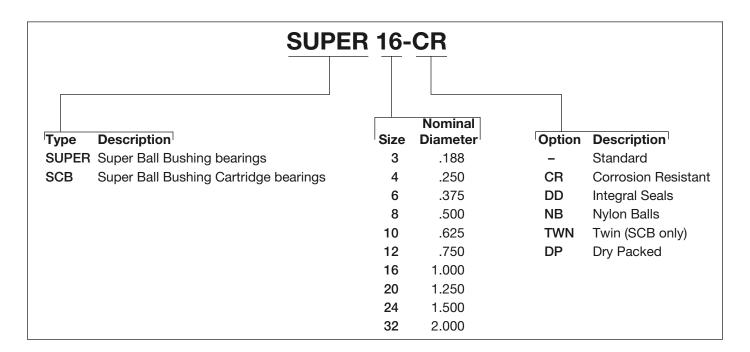
60 Case LinearRace Supports For End Supported Applications


SB 60 Case LinearRace End Support Block Features:

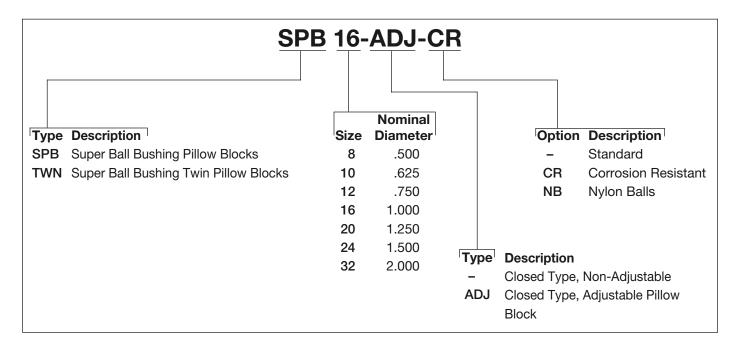
- Size range between 1/4 and 2 inch.
- Easily secured with two mounting bolts.
- Malleable iron alloy for sizes ½ to 2 inch diameter.
- Protected by corrosion resistant coating.
- Light weight, high strength aluminum alloy construction for sizes 1/4 and 3/8 inch.

ASB Low Profile 60 Case LinearRace End Support Block Features:

- Size range between 1/4 and 11/2 inch.
- Low profile design.
- Easily secured with two mounting bolts.
- Protected by corrosion resistant anodized coating.
- Light weight, high strength aluminum alloy construction.


FSB Flanged 60 Case LinearRace End Support Block Features:

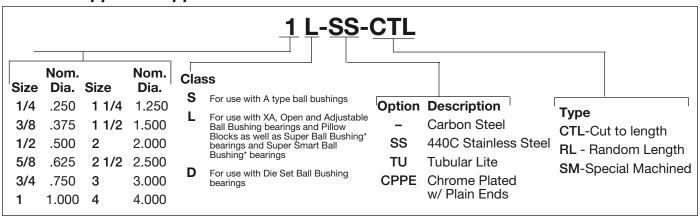
- Available in ½, ¾, 1 and 1¼ inch diameters.
- Flanged mounting surface for easy assembly.
- Easily secured with four mounting bolts.
- Designed specifically for use with Super Ball Bushing Flanged Pillow Blocks
- Protected by corrosion resistant coating.
- Light weight, high strength aluminum alloy construction.



Part Number Description and Specification:

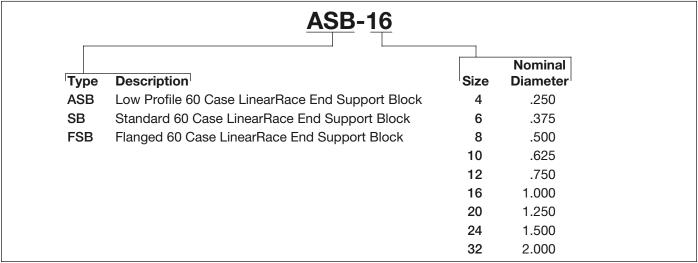
Super Ball Bushing* Bearings (Closed Type) for End Supported Applications

Super Ball Bushing Pillow Blocks (Closed Type) *for End Supported Applications*



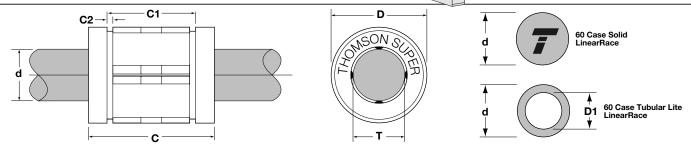
Website: www.thomsonballbushing.com

Part Number Description and Specification:

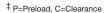

60 Case* LinearRace* for End Supported Applications

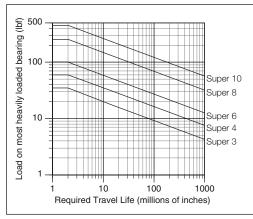
60 Case Line	arRace									
Part Number			Part Number		Part Number		Part Number		Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class L	Max. Length in.	Stainless Steel LinearRace	Max. Length in.	Chrome Plated LinearRace	Max. Length in.	60 Case Tubular Lite LinearRace	Max. Length in.	Chrome Plated Tubular Lite LinearRace	Max. Length in.
1/4 L	.2495/.2490	96	1/4 L SS	60	1/4 L CPPE	92				
3/8 L	.3745/.3740	180	3/8 L SS	180	3/8 L CPPE	166				
1/2 L	.4995/.4990	180	1/2 L SS	180	1/2 L CPPE	168				
5/8 L	.6245/.6240	180	5/8 L SS	180	5/8 L CPPE	178				
3/4 L	.7495/.7490	180	3/4 L SS	180	3/4 L CPPE	178	3/4 L TU	180	3/4 L TU CPPE	178
1 L	.9995/.9990	204	1 L SS	180	1 L CPPE	178	1 L TU	180	1 L TU CPPE	178
1 1/4 L	1.2495/1.2490	204	1 1/4 L SS	180	1 1/4 L CPPE	178				
1 1/2 L	1.4994/1.4989	204	1 1/2 L SS	180	1 1/2 L CPPE	178	1 1/2 LTU	180	1 1/2 L TU CPPE	178
2 L	1.9994/1.9987	204	2 L SS	180	2 L CPPE	178	2 L TU	180	2 L TU CPPE	178

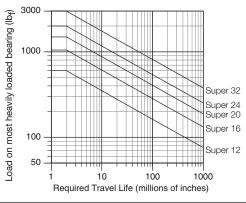
60 Case LinearRace Support Blocks


for End Supported Applications

Super Ball Bushing Bearings(Closed Type) for End Supported Applications






Super Ball I	uper Ball Bushing* Bearings (Closed Type) and 60 Case* LinearRace* (Dimensions in inches)												
Part Nur Ball Bushing Bearing	nber ⁽²⁾ 60 Case LinearRace	Nominal Diameter	Length C	Distance Between Retaining Ring Grooves C1	Retaining Ring Groove min. C2	Number of Ball Circuits	Ball Bushing Bearing Mass Ib	60 Case LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace ID D1		
SUPER 3	3/16 L	.188	.562/.547	_	_	4	.003	.04	.008	_	_		
SUPER 4	1/4 L	.250	.750/.735	.511/.501	.039	4	.01	.027	.01	_	_		
SUPER 6	3/8 L	.375	.875/.860	.699/.689	.039	4	.02	.027	.03	_	_		
SUPER 8	1/2 L	.500	1.250/1.230	1.032/1.012	.050	4	.04	.04	.06	_	_		
SUPER 10	5/8 L	.625	1.500/1.480	1.105/1.095	.056	5	.10	.04	.09	_	_		
SUPER 12	3/4 L	.750	1.625/1.605	1.270/1.250	.056	6	.14	.06	.13	.08	.46/.41		
SUPER 16	1 L	1.000	2.250/2.230	1.884/1.864	.070	6	.25	.08	.22	.16	.62/.56		
SUPER 20	1 1/4 L	1.250	2.625/2.600	2.004/1.984	.068	6	.45	.08	.35	_	_		
SUPER 24	1 1/2 L	1.500	3.000/2.970	2.410/2.390	.086	6	.85	.08	.50	.33	.93/.84		
SUPER 32	2 L	2.000	4.000/3.960	3.193/3.163	.105	6	1.45	.10	.89	.54	1.31/1.18		

Part Number ⁽²⁾	Working	Recommended Hou	using Bore Diameter	60 Case	Ball Bushing Beari	Dynamic ⁽¹⁾	
Ball Bushing Bearing	Bore Diameter	Fixed Adjustable D D		LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SUPER 3	.1875/.1870	.3755/.3750	.3760/.3750	.1870/.1865	.0015C/.0000	.002C/.0000	35
SUPER 4	.2500/.2495	.5005/.5000	.5010/.5000	.2495/.2490	.0015C/.0000	.002C/.0000	60
SUPER 6	.3750/.3745	.6255/.6250	.6260/.6250	.3745/.3740	.0015C/.0000	.002C/.0000	100
SUPER 8	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	255
SUPER 10	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	450
SUPER 12	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	600
SUPER 16	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	1050
SUPER 20	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0000	1500
SUPER 24	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	2000
SUPER 32	2.0000/1.9992	3.0010/3.0000	3.0010/3.0000	1.9994/1.9987	.0023C/.0002P	.0023C/.0002P	3000

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ K_0 .

Where K_0 can be determined from the Polar Graph to the right.

Page 44

(Dimensions in inches)

Website: www.thomsonballbushing.com

Phone: 1-800-554-8466

60 Case LinearRace Support Blocks for End Supported Applications

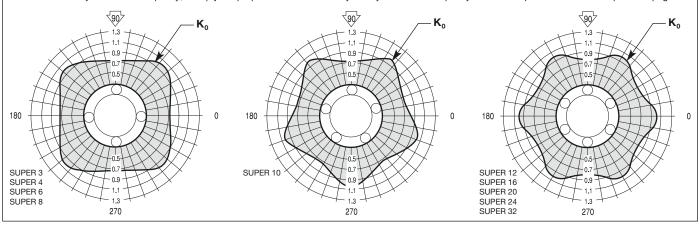
Type SB LinearRace Support Block H1 H2 Material: Malleable Iron for sizes .5 to 2 in. Aluminum Alloy for sizes .25 and .375 in.

	Nominal LinearRace	Н	H1	H2	Α	A2	В	E	N3		
Part ⁽²⁾ No.	Diameter d	±.002						±.010	Hole	Bolt	Mass lb
SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03
SB-6	.375	.750	1.19	.25	1.63	.69	.56	1.250	.16	#6	.05
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.40
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.50
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	1/4	1.00
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	⁵ /16	2.00
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	⁵ /16	2.60
SB-32	2.000	2.500	4.50	.63	6.00	2.63	1.50	4.500	.41	3/8	4.80
Type A	Type ASB 60 Case LinearRace End Support Blocks (Dimensions in inches										

Type SB 60 Case* LinearRace* End Support Blocks

Type ASB LinearRace Support Block
H1 + N3 + B + Material: Aluminum Alloy

Type AS	Type ASB 60 Case LinearRace End Support Blocks (Dimensions in inch													
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	А	A1	В	E	N3		Mass				
No.	d	±.001			±.001			Hole	Bolt	lb				
ASB-4	.250	.500	.88	1.50	.750	.50	1.12	.16	#6	.06				
ASB-6	.375	.562	1.00	1.62	.813	.56	1.25	.16	#6	.08				
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11				
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22				
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	1/4	.44				
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	⁵ /16	1.16				

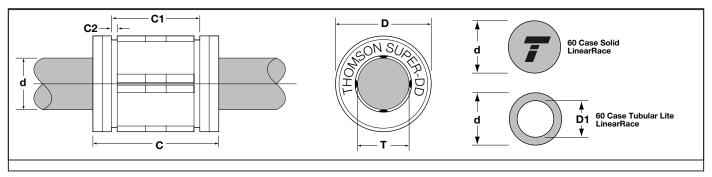

Type FSB Flanged LinearRace Support Block
$\begin{array}{c c} A & & & \\ \hline B & & & \\ \hline C & & & \\ \hline G & & & \\ \hline B & & & \\ \hline G & & & \\$
Material: Aluminum Alloy

Type FSB	Flanged 60 C	(Dimensions in inches)									
Part ⁽²⁾	Nominal LinearRace Diameter	Α	В	С	D	Е	F	G	ì	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

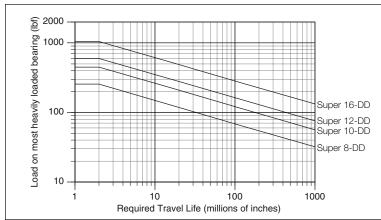
Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



Propart number description and specifications see page 42 and 43. Note: For additional technical data, see Engineering Support Appendix.

Sealed Super Ball Bushing Bearings (Closed Type) for End Supported Applications



Sealed Sup	er Ball Bus	hing* Bea	arings (Close	d Type, seal at	: both ends) a	and 60 Ca	se* Linear	Race*	(D	imensions i	n inches)
Part Nun	nber ⁽²⁾			Distance Between	Retaining Ring	Number	Ball	60 Case	60 Case Solid	60 Case Tubular Lite	60 Case Tubular Lite
Ball Bushing Bearing	60 Case LinearRace	Nominal Diameter d	Length C	Retaining Ring Grooves C1	Groove min. C2	Number of Ball Circuits	Bushing Bearing Mass Ib	LinearRace Minimum Depth of Hardness	LinearRace Mass Ib/in	LinearRace Mass Ib/in	LinearRace ID D1
SUPER-8-DD	1/2 L	.500	1.500/1.460	1.032/1.012	.050	4	.05	.04	.06	_	_
SUPER-10-DD	5/8 L	.625	1.750/1.710	1.105/1.095	.056	5	.11	.04	.09	_	_
SUPER-12-DD	3/4 L	.750	1.875/1.835	1.270/1.250	.056	6	.15	.06	.13	.08	.46/.41
SUPER-16-DD	1 L	1.000	2.625/2.585	1.884/1.864	.070	6	.27	.08	.22	.16	.62/.56

Part Number ⁽²⁾	Working	Recommended Hou	sing Bore Diameter	60 Case	Ball Bushing Bearing	ng/LinearRace Fit Up‡	Dynamic ⁽¹⁾
Ball Bushing Bearing	Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SUPER-8-DD	.5000/.4995	.8750/.8755	.8750/.8760	.4995/.4990	.0015C/.0000	.002C/.0000	255
SUPER-10-DD	.6250/.6245	1.1250/1.1255	1.1250/1.1260	.6245/.6240	.0015C/.0000	.002C/.0000	450
SUPER-12-DD	.7500/.7495	1.2500/1.2505	1.2500/1.2510	.7495/.7490	.0015C/.0000	.002C/.0000	600
SUPER-16-DD	1.0000/.9995	1.5625/1.5630	1.5625/1.5635	.9995/.9990	.0015C/.0000	.002C/.0000	1050

[‡] P=Preload, C=Clearance

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

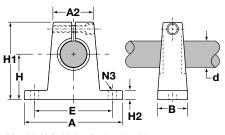
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ K_0 .

Where K_0 can be determined from the Polar Graph to the right.

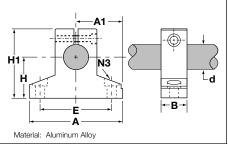
Page 46

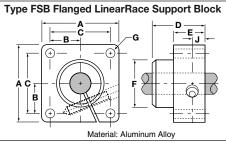


Website: www.thomsonballbushing.com

Super Ball Bushing Bearing

60 Case LinearRace Support Blocks for End Supported Applications

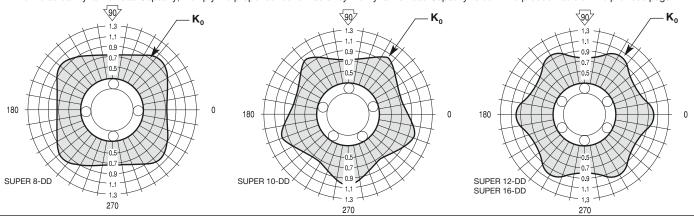

Type SB LinearRace Support Block


Material: Malleable Iron for sizes .5 to 2 in.
Aluminum Alloy for sizes .25 and .375 in.

Type S	B 60 Case*	LinearR	ace* Eı	nd Su	pport E	Blocks		(Di	imensio	ns in i	nches)
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	H2	Α	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.3
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.4
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.5
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	1/4	1.0

Type ASB LinearRace Support Block

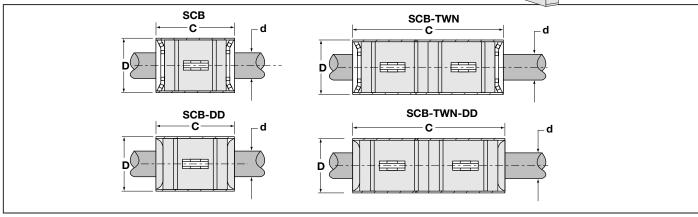
Type ASB	60 Case Li	(C	Dimensi	ons in i	nches)					
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N3		Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	1/4	.44



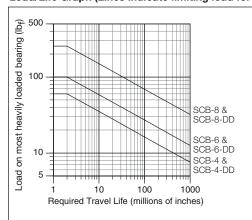
Type FSI	Type FSB Flanged 60 Case LinearRace End Support Blocks (Dimensions													
Part [®]	Nominal LinearRace Diameter	A	В	С	D	Е	F		G		Mass			
No.	d			±.010				Hole	Bolt		lb			
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3			
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6			
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8			

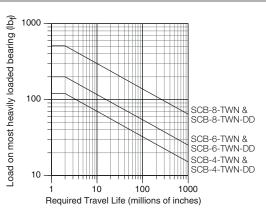
- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- ⁽²⁾ For part number description and specifications see page 42 and 43.
- Note: For additional technical data, see Engineering Support Appendix.

Polar Graphs


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

Super Ball Bushing Cartridge Bearing





Super	Ball Bushi	ng* Cartrido	ge Bearin	gs and	60 Case	* LinearRace	e*				(Din	nensions in	inches)
	Part Number	er ⁽²⁾				Ball Bushing	Ball Bushing	60 Case	Nominal	Rec. Housing	60 Case LinearRace	60 Case	Dynamic ⁽¹⁾
Without Seals	With Seals	60 Case LinearRace	Nominal Diameter	Length C ±.005	Number of Ball Circuits	Mass w/o Seals lb	Mass With Seals Ib	LinearRace Diameter d	Outside Dia. D	Bore Dia. Fixed	Minimum Depth of Hardness	LinearRace Mass Ib/in	Load Capacity Ib _f
SCB-4	SCB-4-DD	1/4 L	.250	1.000	4	.01	.02	.2495/.2490	.531/.529	.535/.533	.027	.01	60
SCB-6	SCB-6-DD	3/8 L	.375	1.125	4	.02	.03	.3745/.3740	.656/.654	.660/.658	.027	.03	100
SCB-8	SCB-8-DD	1/2 L	.500	1.500	4	.06	.07	.4995/.4990	.906/.904	.910/.908	.04	.06	255

Super Ba	Super Ball Bushing Twin Cartridge Bearings and 60 Case LinearRace (Dimensions in inches)														
	Part Number ⁽²⁾					Dell Duching	Ball Bushing	60 Case	Nominal	Rec. Housing	60 Case LinearRace	60 Case	Dynamic ⁽¹⁾		
Without Seals	With Seals	60 Case LinearRace	Nominal Diameter	Length C ±.005	Number of Ball Circuits	Ball Bushing Mass w/o Seals Ib	Mass With Seals Ib	LinearRace Diameter d	Outside Dia. D	Bore Dia. Fixed	Minimum Depth of Hardness	LinearRace Mass Ib/in	Load Capacity lb _f		
SCB-4-TWN	SCB-4-TWN-DD	1/4 L	.250	1.750	4	.02	.04	.2495/.2490	.531/.529	.535/.533	.027	.01	120		
SCB-6-TWN	SCB-6-TWN-DD	3/8 L	.375	2.000	4	.03	.04	.3745/.3740	.656/.654	.660/.658	.027	.03	200		
SCB-8-TWN	SCB-8-TWN-DD	1/2 L	.500	2.750	4	.12	.13	.4995/.4990	.906/.904	.910/.908	.04	.06	510		

Load/Life Graph (Lines indicate limiting load for given Ball Bushing Cartridge Bearing)

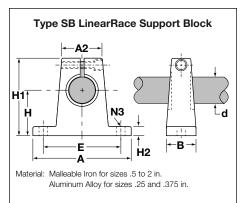
Determining Ball Bushing Bearing Size

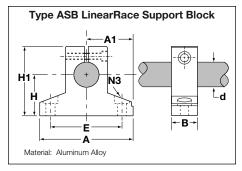
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this

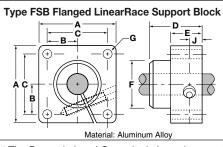
Load on most heavily loaded bearing = maximum applied load/K₀.

Where $K_{\scriptscriptstyle 0}$ can be determined from the Polar Graph to the right.


Page 48

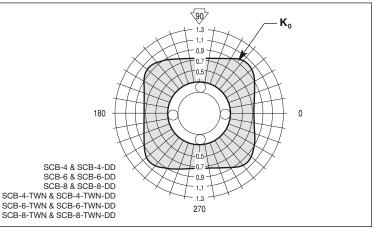

Website: www.thomsonballbushing.com

60 Case LinearRace Support Blocks


for End Supported Applications

Type S	B 60 Case*	imensions in inche									
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	H2	A	A2	В	E		N3	
No.	a	±.002						±.010	Hole	Bolt	lb
SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03
SB-6	.375	.750	1.19	.25	1.63	.69	.56	1.250	.16	#6	.05
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30

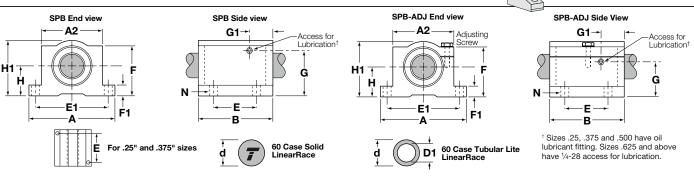
Type AS	B 60 Case L	.inearRa	e End	Support	Blocks		([Dimensi	ons in i	nches)
Part ^②	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N	3	Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-4	.250	.500	.88.	1.50	.750	.50	1.12	.16	#6	.06
ASB-6	.375	.562	1.00	1.62	.813	.56	1.25	.16	#6	.08
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11

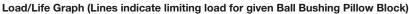

Type FS	B Flanged 60	Case L	inearF	Race End	d Supp	ort B	locks	(Dim	nension	s in ir	nches)
Part [©]	Nominal LinearRace Diameter	Α	В	С	D	Е	F	G	à	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3

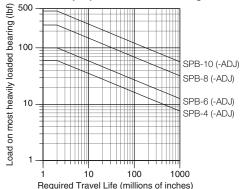
- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below. Dynamic load capacity of Twin Super Cartridge bearing is based on two bearings equally loaded.
- ⁽²⁾ For part number description and specifications see page 42 and 43.

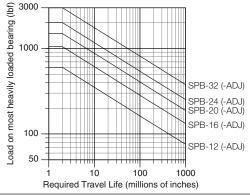
 Note: For additional technical data, see **Engineering Support Appendix**.

Polar Graph


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.


Super Ball Bushing Pillow Blocks


(Closed and Adjustable Type) for End Supported Applications


Super Ba	all Bushing* Pill	ow Blocks (Cl	osed and A	djustabl	е Туре	es, seal at both e	nds) and 60* C	ase LinearRa	ce* (Dimensio	ons in inches)
	Part Number	(2)		н	H1		60 Case	60 Case	60 Case	60 Case
	Ball Bushing ow Block	60 Case	Nominal	п	пі	60 Case LinearRace Diameter	LinearRace Minimum Depth of	Solid LinearRace Mass	Tubular Lite LinearRace Mass	Tubular Lite LinearRace ID
Fixed	Adjustable	LinearRace	Diameter	±.003		d	Hardness	lb/in	lb/in	D1
SPB-4	SPB-4-ADJ	1/4 L	.250	.437	.81	.2495/.2490	.027	.01	-	-
SPB-6	SPB-6-ADJ	3/8 L	.375	.500	.94	.3745/.3740	.027	.03	-	-
SPB-8	SPB-8-ADJ	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	_	_
SPB-10	SPB-10-ADJ	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	_	_
SPB-12	SPB-12-ADJ	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
SPB-16	SPB-16-ADJ	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
SPB-20	SPB-20-ADJ	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	_	_
SPB-24	SPB-24-ADJ	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84
SPB-32	SPB-32-ADJ	2 L	2.000	2.125	4.06	1.9994/1.9987	.10	.89	.54	1.31/1.18

Super	: Number ⁽²⁾ Ball Bushing ow Block	Α	A2	В	E	E1	F	F1	G	G1	N		Pillow Block	Dynamic ⁽¹⁾ Load Capacity
Fixed	Adjustable				±.010	±.010					Hole	Bolt	Mass lb	lb _f
SPB-4	SPB-4-ADJ	1.63	1.00	1.19	.750	1.313	.75	.19	.61	.22	.16	#6	.10	60
SPB-6	SPB-6-ADJ	1.75	1.13	1.31	.875	1.438	.88	.19	.72	.22	.16	#6	.13	100
SPB-8	SPB-8-ADJ	2.00	1.38	1.69	1.000	1.688	1.13	.25	.69	.84	.16	#6	.20	255
SPB-10	SPB-10-ADJ	2.50	1.75	1.94	1.125	2.125	1.44	.28	.70	.68	.19	#8	.50	450
SPB-12	SPB-12-ADJ	2.75	1.88	2.06	1.250	2.375	1.56	.31	.94	.72	.19	#8	.60	600
SPB-16	SPB-16-ADJ	3.25	2.38	2.81	1.750	2.875	1.94	.38	1.20	.86	.22	#10	1.20	1050
SPB-20	SPB-20-ADJ	4.00	3.00	3.63	2.000	3.500	2.50	.44	1.50	1.20	.22	#10	2.50	1500
SPB-24	SPB-24-ADJ	4.75	3.50	4.00	2.500	4.125	2.88	.50	1.75	1.25	.28	1/4	3.80	2000
SPB-32	SPB-32-ADJ	6.00	4.50	5.00	3.250	5.250	3.63	.63	2.12	1.58	.41	3/8	7.00	3000

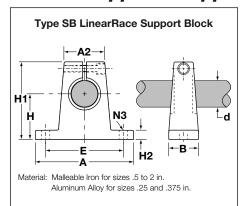
Page 50

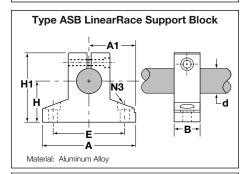
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

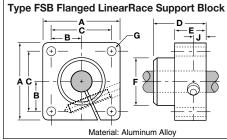
Note: For the purpose of using this chart.

Load on most heavily loaded bearing = maximum applied load/K₀.

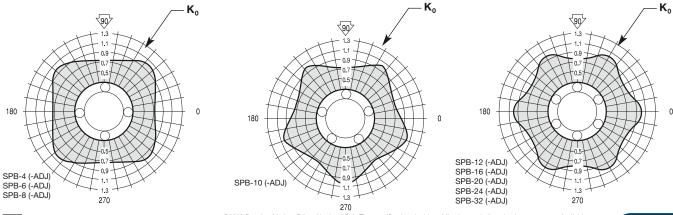

Where K₀ can be determined from the Polar Graph to the right.


Website: www.thomsonballbushing.com

Super Ball Bushing Bearing


60 Case LinearRace Support Blocks for End Supported Applications

Type SI	B 60 Case*	LinearR	ace* E	nd Su	port B	ocks		(Di	mensio	ns in in	ches)
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	H2	Α	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03
SB-6	.375	.750	1.19	.25	1.63	.69	.56	1.250	.16	#6	.05
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.40
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.50
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	1/4	1.00
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	⁵ / ₁₆	2.00
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	⁵ / ₁₆	2.60
SB-32	2.000	2.500	4.50	.63	6.00	2.63	1.50	4.500	.41	3/8	4.80


Type AS	B 60 Case L	.inearRa	ce End	Support	Blocks		(D	imensic	ns in ir	ches)
Part (2)	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N	3	Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-4	.250	.500	.88	1.50	.750	.50	1.12	.16	#6	.06
ASB-6	.375	.562	1.00	1.62	.813	.56	1.25	.16	#6	.08
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	1/4	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	⁵ /16	1.16

Type FSI	3 Flanged 60	Case L	inearR	ace End	Suppo	ort Blo	cks	(Dime	ension	s in ir	nches)
Part (2)	Nominal LinearRace Diameter	Α	В	С	D	E	F	G Hole Bolt		J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

¹⁰ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing of the direction of the applied load. For dynamic load correction factors see polar graphs below.

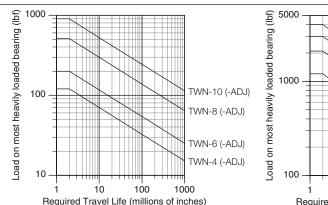
The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

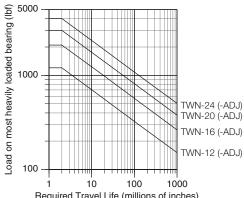

⁽²⁾ For part number description and specifications see page 42 and 43.

Note: For additional technical data, see Engineering Support Appendix.

Page 51

Super Ball Bushing Twin Pillow Blocks


(Closed Type) for End Supported Applications



Super Ba	all Bushing* Twi	in Pillow Blocl	ks (Closed 1	Гуре, ѕе	al at b	oth ends) and 60	Case* Linear	Race*	(Dimension	ons in inches)
	Part Number	(2)		н	H1		60 Case	60 Case	60 Case	60 Case
	Ball Bushing Pillow Block	60 Case	Nominal	"		60 Case LinearRace Diameter	LinearRace Minimum Depth of	Solid LinearRace Mass	Tubular Lite LinearRace Mass	Tubular Lite LinearRace ID
Fixed	Adjustable	LinearRace	Diameter	±.003		d	Hardness	lb/in	lb/in	D1
TWN-4	TWN-4-ADJ	1/4 L	.250	.437	.81	.2495/.2490	.027	.01	-	-
TWN-6	TWN-6-ADJ	3/8 L	.375	.500	.94	.3745/.3740	.027	.03	-	-
TWN-8	TWN-8-ADJ	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	-
TWN-10	TWN-10-ADJ	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	-	-
TWN-12	TWN-12-ADJ	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
TWN-16	TWN-16-ADJ	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
TWN-20	TWN-20-ADJ	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	-	-
TWN-24	TWN-24-ADJ	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84

	Number ⁽²⁾ Ball Bushing	А	A2	В	E	E1	F	F1	G	G1	N	1	Pillow	Dynamic ⁽¹⁾ Load
Twin	Pillow Block Adjustable				±.010	±.010					Hole	Bolt	Block Mass lb	Capacity Ib _f
TWN-4	TWN-4-ADJ	1.63	1.00	2.50	2.000	1.313	.75	.19	.44	1.25	.16	#6	.19	120
TWN-6	TWN-6-ADJ	1.75	1.13	2.75	2.250	1.438	.88	.19	.50	1.37	.16	#6	.25	200
TWN-8	TWN-8-ADJ	2.00	1.38	3.50	2.500	1.688	1.13	.25	.59	1.75	.16	#6	.40	510
TWN-10	TWN-10-ADJ	2.50	1.75	4.00	3.000	2.125	1.44	.28	.85	2.00	.19	#8	1.00	900
TWN-12	TWN-12-ADJ	2.75	1.88	4.50	3.500	2.375	1.56	.31	.94	2.25	.19	#8	1.20	1200
TWN-16	TWN-16-ADJ	3.25	2.38	6.00	4.500	2.875	1.94	.38	1.19	3.00	.22	#10	2.40	2100
TWN-20	TWN-20-ADJ	4.00	3.00	7.50	5.500	3.500	2.50	.44	1.50	3.75	.22	#10	5.00	3000
TWN-24	TWN-24-ADJ	4.75	3.50	9.00	6.500	4.125	2.88	.50	1.75	4.50	.28	1/4	7.80	4000

Load/Life Graph (Lines indicate limiting load for given Ball Bushing Pillow Block)

Determining Ball Bushing Bearing Size

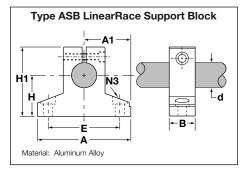
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

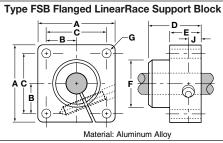
Load on most heavily loaded bearing = maximum applied load/K₀.

Where K₀ can be determined from the Polar Graph to the right.

Page 52


Website: www.thomsonballbushing.com

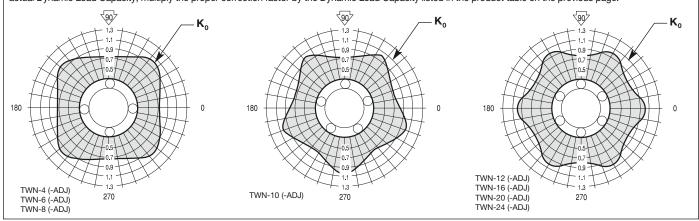
Super Ball Bushing Bearing


60 Case LinearRace Support Blocks for End Supported Applications

Type SB LinearRace Support Block Material: Malleable Iron for sizes .5 to 2 in Aluminum Alloy for sizes .25 and .375 in.

Type SE	3 60 Case* I	LinearRa	ace* En	d Sup	port Bl	ocks		(Din	nensio	ns in i	nches)
Part (2)	Nominal LinearRace Diameter	Н	H1	H2	A	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03
SB-6	.375	.750	1.19	.25	1.63	.69	.56	1.250	.16	#6	.05
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.40
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.50
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	1/4	1.00
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	⁵ / ₁₆	2.00
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	5/16	2.60

Type ASE	3 60 Case L	inearRac	e End S	Suppor	t Blocks		(D	imensio	ns in ir	nches)		
Part (2)	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N3		Mass		
No.	d	±.001			±.001			Hole	Bolt	lb		
ASB-4	.250	.500	.88	1.50	.750	.50	1.12	.16	#6	.06		
ASB-6	.375	.562	1.00	1.62	.813	.56	1.25	.16	#6	.08		
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11		
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22		
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	1/4	.44		
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	⁵ /16	1.16		

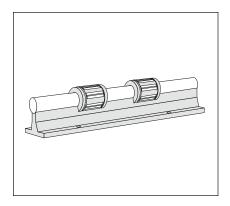


Type FS	B Flanged 60	Type FSB Flanged 60 Case LinearRace End Support Blocks (Dimensions in inch														
Part (2)	Nominal LinearRace Diameter	Α	В	С	D	Е	F	G Hole Bolt		J	Mass					
No.	d			±.010				Hole	Bolt		lb					
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3					
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6					
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8					
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9					

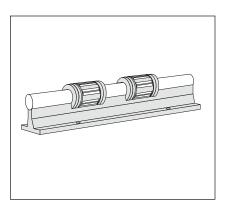
The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below. Dynamic load capacity of Super Ball Bushing Twin Pillow Blocks is based on two bearings equally loaded.

Polar Graphs

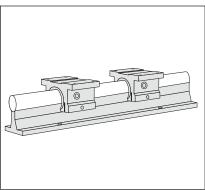
The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



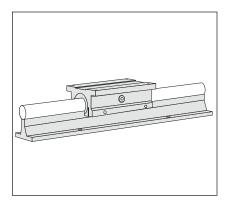
⁽²⁾ For part number description and specifications see page 42 and 43.


Note: For additional technical data, see Engineering Support Appendix.

Super Ball Bushing Bearings and Pillow Blocks for Continuously Supported Applications


Super Ball Bushing* Bearings (Open Type) Features:

- Available in sizes ½-2 inch diameter.
- Load capacity ranges from 230 to 2,350 lb_f.
- Self-aligning in all directions.
- Can be adjusted to take out diametrical clearance.
- Can be mounted in customized housing.
- Travel speeds up to 10 ft/s.
- Available with corrosion resistant components.


Sealed Super Ball Bushing Bearings (Open Type) Features:

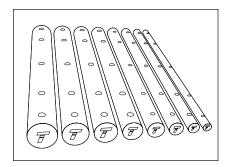
- Standard integral double acting seals retain lubrication and keep out contaminants.
- Available in sizes ½, ¾ and 1 inch diameter.
- Load capacity ranges from 230 to 780 lb_f.
- Self-aligning in all directions.
- Can be adjusted to take out diametrical clearance.
- Can be mounted in customized housing.
- Travel speeds up to 10 ft/s.
- Available with corrosion resistant components.

Super Ball Bushing Pillow Blocks (Open Type) Features:

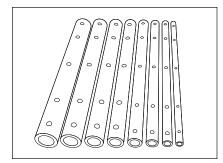
- Available in sizes ½-2 inch diameter.
- Load capacity ranges from 230 to 2,350 lb_f.
- Self-aligning in all directions.
- Can be adjusted to take out diametrical clearance.
- Travel speeds up to 10 ft/s.
- Standard integral double acting seals retain lubrication and keep out contaminants.
- Available with corrosion resistant components.
- Easily mounted and secured with four mounting bolts.
- Available with standard lubrication access. Sizes .25, .375 and .500 have oil lubricant fitting. Sizes .625 and above have ½-28 access for lubrication.

Super Ball Bushing Twin Pillow Blocks (Open Type) Features:

- Available in sizes ½-1½ inch diameter.
- Load capacity ranges from 460 to 3,120 lb_f.
- Can be adjusted to take out diametrical clearance.
- Available with corrosion resistant components.
- Standard integral double acting seals retain lubrication and keep out contaminants.
- Easily mounted and secured with four mounting bolts.
- Maximum travel speeds up to 10 ft/s.
- Available with standard lubrication access. Sizes .25, .375 and .500 have oil lubricant fitting. Sizes .625 and above have ½-28 access for lubrication.
- Built-in lubrication wick for continuous lubrication.

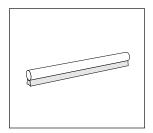


Website: www.thomsonballbushing.com


Super Ball Bushing Bearing

60 Case LinearRace Shafting (PreDrilled) for Continuously Supported Applications

Solid 60 Case* LinearRace* Shafting with Mounting Holes Features:


- Radial drilled and tapped holes ready for immediate use with standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between ½ and 4 inch.
- Surface finish 12 R_a microinch.
- Hardness 60 HRC minimum.
- Roundness 80 millionths of an inch.
- Available in corrosion resistant 440C stainless steel (50 HRC minimum).
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case Tubular Lite LinearRace Shafting with Mounting Holes Features:

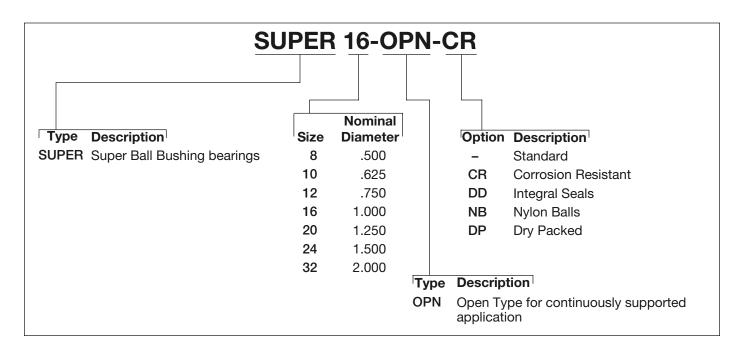

- Hollow design reduces weight and inertia.
- Radial drilled and tapped holes ready for immediate use.
- Standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between 1½ and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 60 HRC minimum.
- Surface finish 12 R_a microinch.
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

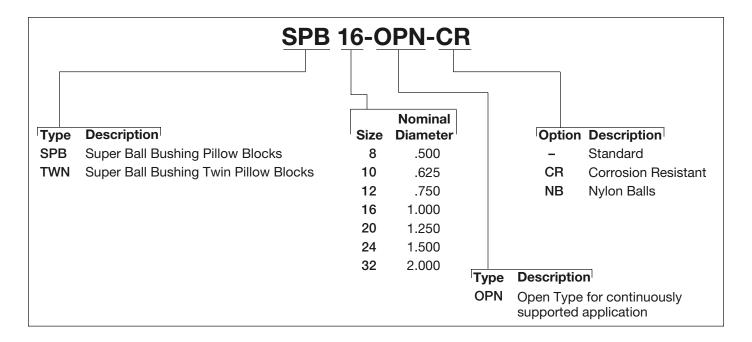
LSR Low Profile 60 Case LinearRace Support Rail Features:

- Diameter range between ½ and 4 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for custom hole spacing.
- Low Profile design.
- Unlimited travel lengths.

SR 60 Case LinearRace Support Rail SRA 60 Case LinearRace Support Rail Assembly Features:


- Diameter range between ½ and 2 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for customized hole spacing.
- Available as a pre-engineered, ready to install assembly.
- Light weight, high strength aluminum alloy rail.
- Unlimited travel lengths.

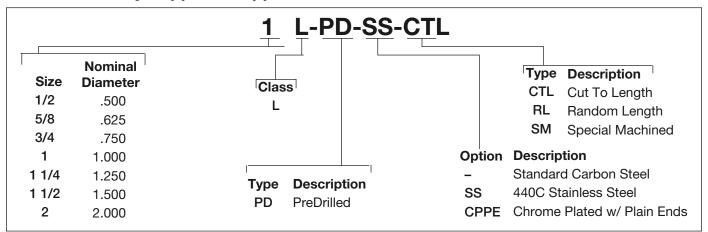
Part Number Description and Specification:


Super Ball Bushing* Bearings (Open Type)

for Continuously Supported Applications

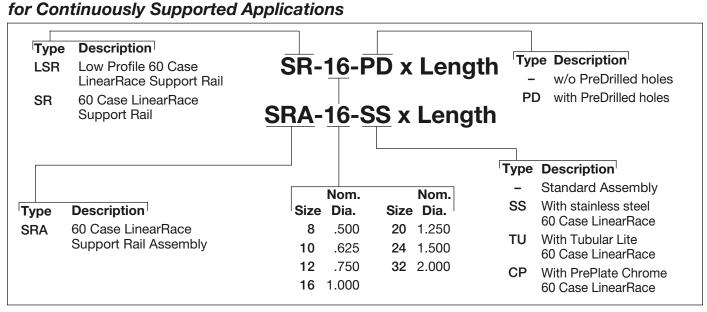
Super Ball Bushing Pillow Blocks (Open Type)

for Continuously Supported Applications

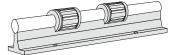

TTHOMSON

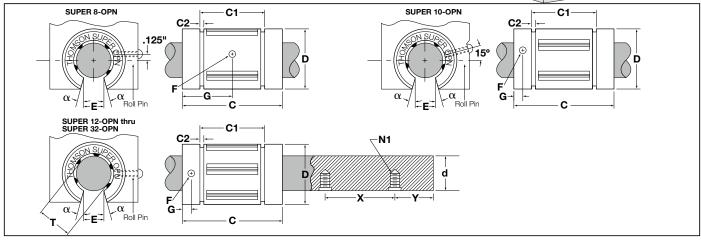
Website: www.thomsonballbushing.com

Part Number Description and Specification:


60 Case* LinearRace* Shafting (PreDrilled)

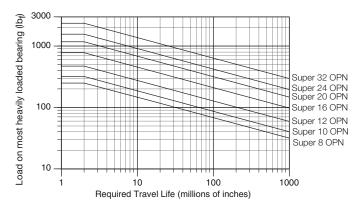
for Continuously Supported Applications


60 Case LinearRace S	Shafting					
Part Number			Part Number		Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class L	Max. Length in.	Stainless Steel 60 Case LinearRace	Max. Length in.	Chrome Plated 60 Case LinearRace	Max. Length in.
1/2 L PD	.4995/.4990	168	_	_	1/2 L PDCPPE	168
5/8 L PD	.6245/.6240	178	5/8 L PD SS	178	5/8 L PDCPPE	178
3/4 L PD	.7495/.7490	178	3/4 L PD SS	178	3/4 L PDCPPE	178
1 L PD	.9995/.9990	178	1 L PD SS	178	1 L PDCPPE	178
1 1/4 L PD	1.2495/1.2490	178	1 1/4 L PD SS	178	1 1/4 L PDCPPE	178
1 1/2 L PD	1.4994/1.4989	178	1 1/2 L PD SS	178	1 1/2 L PDCPPE	178
2 L PD	1.9994/1.9987	178	2 L PD SS	178	2 L PDCPPE	178


60 Case LinearRace Support Rails and Assemblies

Super Ball Bushing Bearings (Open Type) for Continuously Supported Applications





Super Ball I	Bushing Bea	rings (O	pen Type) a	and 60 Case	e Linea	rRace)						(Dimens	sions	in ii	nches)
Part N	umber ⁽²⁾			Distance Between	Ret. Ring	Min.	Retenti	on Hole			Ball	60 Case	60 Case		60 C	
Dall Duckins	60 Case Solid LinearRace	Nominal	Length	Retaining Rings	Groove min.		Dia.	Loc.	Angle deg	Number of Ball	Bushing Bearing	LinearRace Minimum	Solid LinearRace			Race g Holes
Ball Bushing Bearing	shafting	Diameter	C	C1	C2	E	F	G	α	Circuits	Mass lb	Depth of Hardness	Mass lb/in	Х	Υ	N1
SUPER8OPN	1/2 L PD	.500	1.250/.1230	1.032/1.012	.050	.31	.14	.63	15	4	.04	.04	.06	4	2	#6-32
SUPER100PN	5/8 L PD	.625	1.500/1.480	1.105/1.095	.056	.37	.11	.13	15	4	.08	.04	.09	4	2	#8-32
SUPER12OPN	3/4 L PD	.750	1.625/1.605	1.270/1.250	.056	.43	.14	.13	15	5	.12	.06	.13	6	3	#10-32
SUPER16OPN	1 L PD	1.000	2.250/2.230	1.884/1.864	.070	.56	.14	.13	15	5	.21	.08	.22	6	3	1/4-20
SUPER20OPN	1 1/4 L PD	1.250	2.625/2.600	2.004/1.984	.068	.62	.20	.19	15	5	.38	.08	.35	6	3	⁵ /16 -18
SUPER24OPN	1 1/2 L PD	1.500	3.000/2.970	2.410/2.390	.086	.75	.20	.19	15	5	.71	.08	.50	8	4	³ %-16
SUPFR32OPN	21 PD	2.000	4.000/3.960	3.193/3.163	.105	1.00	.27	31	15	5	1.20	.10	.89	8	4	1/2-13

Part Number ⁽²⁾	Working		ded Housing iameter	60 Case	Ball Bushing Beari	ng/LinearRace Fit Up‡	Dynamic(1)
Ball Bushing Bearing	Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SUPER8OPN	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.0020C/.0000	230
SUPER100PN	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.0020C/.0000	320
SUPER120PN	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.0020C/.0000	470
SUPER16OPN	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.0020C/.0000	780
SUPER20OPN	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.0020C/.0001P	1170
SUPER24OPN	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	1560
SUPER32OPN	2.0000/1.9992	3.0010/3.0000	3.0010/3.0000	1.9994/1.9987	.0023C/.0002P	.0023C/.0002P	2350

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

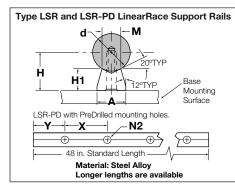
Determining Ball Bushing Bearing Size

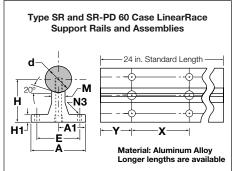
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

Load on most heavily loaded bearing = maximum applied load/ K_{0} .

Where $K_{\mbox{\tiny 0}}$ can be determined from the Polar Graph to the right.


Page 58

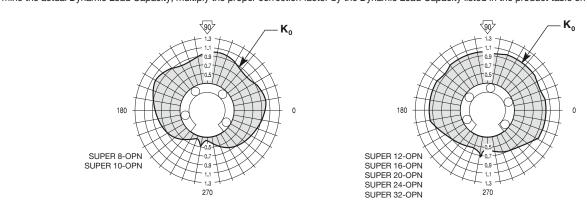

Website: www.thomsonballbushing.com

Super Ball Bushing Bearing

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LS	R and LSR-	PD 60 Cas	se* Line	arRac	e* Supp	ort Ra	ils	(Dimen	sion	s in i	nches)
LSR Standard	LSR-PD Standard	Nominal LinearRace	н	H1	Α	М	Mounti	ng Holes	х	γ	LSR
Without Holes	w/PreDrilled Holes	Diameter d	±.002	'''		.,,	N2 Hole	N1 Bolt		•	Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	⁵ /16-18	6	3	1.27
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68
LSR-32	LSR-32-PD	2.000	1.750	.85	1.18	.88	.53	1/2-13	8	4	2.59

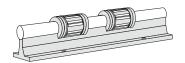
Туре	SR/ SR-	PD Line	earRace	Sup	port	Rails	and A	Assen	nblie	s	(C	imensions	in	inc	ches)
SR	SR-PD With	Assy.	Nom. LinearRace	Н	H1	Α	A1	Ε	М	N	3	LinearRace Mounting	Χ	Υ	SR
Without Holes	PreDrilled Holes	W/Solid LinearRace	Dia. d	±.002			±.002			Hole	Bolt	Bolt N1			Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	.56	.34	5/16	5⁄16-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3%-16 x 2.00	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

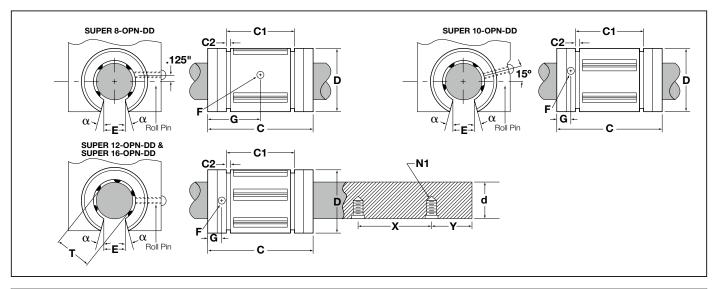

⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

⁽⁹⁾ For part number description and specifications see page 56 and 57. Note: For additional technical data, see **Engineering Support Appendix.**

Standard Without Holes	Standard With PreDrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ⁽²⁾ in	Maximum Single Piece Length ⁽²⁾ in
LSR	LSR-PD	_	48	96
SR	SR-PD	SRA	24	72

Polar Graphs


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



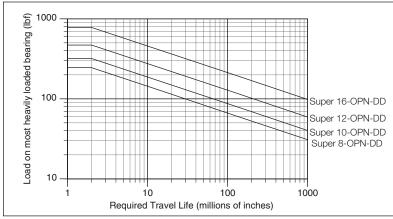
For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 57. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.

Sealed Super Ball Bushing Bearing(Open Type) for Continuously Supported Applications

Sealed Super	Ball Bush	ning* Be	arings (Op	en Type, se	al at bo	th end	ls) and	d 60 Ca	se* Li	inearRa	ce*		(Dimens	sion	s in	inches)
Part Number	er ⁽³⁾			Distance Between	Ret. Ring	Min.	Retenti	on Hole			Ball	60 Case	60 Case			Case arRace
Ball	00 0	Naminal	Length	Retaining Ring Grooves	Groove min.	Slot	Dia.	Loc.	Angle deg	Number of	Bushing Bearing	LinearRace Minimum	Solid LinearRace	N		ing Holes
Bushing Bearing	60 Case LinearRace	Nominal Diameter	C	C1	C2	E	F	G	α	Ball Circuits	Mass lb	Depth of Hardness	Mass lb/in	χ	Υ	N1
SUPER 8-OPN-DD	1/2 L PD	.500	1.500/1.460	1.032/1.012	.050	.31	.14	.750	15	4	.03	.04	.06	4	2	#6-32
SUPER 10-OPN-DD	5/8 L PD	.625	1.750/1.710	1.105/1.095	.056	.37	.11	.250	15	4	.08	.06	.09	4	2	#8-32
SUPER 12-OPN-DD	3/4 L PD	.750	1.875/1.835	1.270/1.250	.056	.43	.14	.250	15	5	.12	.06	.13	6	3	#10-32
SUPER 16-OPN-DD	1 L PD	1.000	2.625/2.585	1.884/1.864	.070	.56	.14	.313	15	5	.21	.08	.22	6	3	1/4-20

Part Number (3)	Working		ded Housing iameter	60 Case LinearRace	Ball Bushing Beari	ng/LinearRace Fit Up‡	Dynamic ⁽¹⁾
Ball Bushing Bearing	Bore Diameter T	Fixed D	Adjustable D	Diameter Tolerance d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SUPER 8-OPN-DD	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	230
SUPER 10-OPN-DD	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	320
SUPER 12-OPN-DD	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	470
SUPER 16-OPN-DD	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	780

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

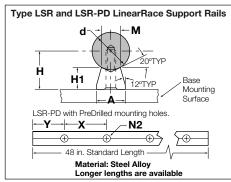


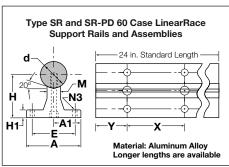
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

‡ P=Preload, C=Clearance

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ K_{0} .

Where K_0 can be determined from the Polar Graph to the right.


Page 60

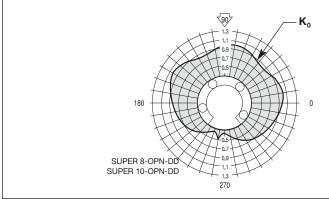

Website: www.thomsonballbushing.com

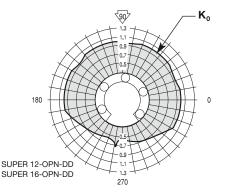
Super Ball Bushing Bearing

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LS	R and LSR-	PD 60 Cas	e* Line	arRac	e* Supp	ort Ra	ils	(Dimen	sion	s in i	nches)
LSR Standard	LSR-PD Standard	Nominal LinearRace	н	H1	Α	М	Mounti	ng Holes	χ	γ	LSR
Without Holes	w/PreDrilled Holes	Diameter d	±.002	•••	,	""	N Hole	N1 Bolt		'	Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01

Туре	SR/ SR-F	D Line	arRace	Sup	port	Rails	and /	Assen	nblie	s	(C	imensions	in	inc	ches)
SR Without Holes	SR-PD With PreDrilled Holes	Assy. W/Solid LinearRace	Nom. LinearRace Dia. d	H ±.002	H1	Α	A1 ±.002	Е	М	N	3 Bolt	LinearRace Mounting Bolt N1	X	Υ	SR Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40

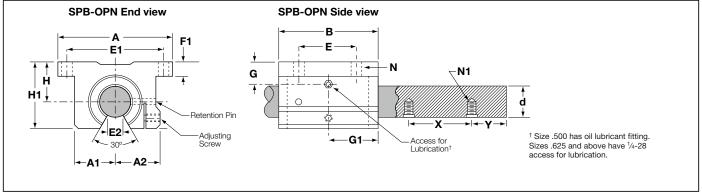

- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- Por the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 57. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.
- ⁽³⁾ For part number description and specifications see page 56 and 57.


Note: For additional technical data, see **Engineering Support Appendix.**

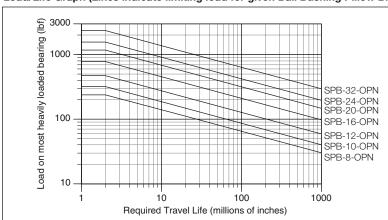
Standard Without Holes	Standard With PreDrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ⁽²⁾ in	Maximum Single Piece Length ⁽²⁾ in
LSR	LSR-PD	-	48	96
SR	SR-PD	SRA	24	72

Polar Graphs


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



Super Ball Bushing Pillow Blocks(Open Type) for Continuously Supported Applications



Super Ball Bush	hing* Pillow B	locks (Open	Type, se	al at bot	h ends) a	and 60 C	ase* Line	earRace	*	(Dime	nsio	ns i	n inches)
Part Nun	nber ⁽³⁾		Н	H1	Α	A1	A2	В	60 Case LinearRace	60 Case Solid			Case
Super Ball Bushing	60 Case	Nominal	••		^	Ai	7.2		Minimum Depth of	LinearRace Mass			arRace ing Holes
Pillow Block	LinearRace	Diameter	±.003						Hardness	lb/in	X	Υ	N1
SPB-8-OPN	1/2 L PD	.500	.687	1.13	2.00	.69	.75	1.50	.04	.06	4	2	#6-32
SPB-10-OPN	5/8 L PD	.625	.875	1.44	2.50	.88	.94	1.75	.04	.09	4	2	#8-32
SPB-12-OPN	3/4 L PD	.750	.937	1.56	2.75	.94	1.00	1.88	.06	.13	6	3	#10-32
SPB-16-OPN	1 L PD	1.000	1.187	2.00	3.25	1.19	1.25	2.63	.08	.22	6	3	1/4-20
SPB-20-OPN	1 1/4 L PD	1.250	1.500	2.56	4.00	1.50	1.63	3.38	.08	.35	6	3	⁵ ⁄16 -18
SPB-24-OPN	1 1/2 L PD	1.500	1.750	2.94	4.75	1.75	1.88	3.75	.08	.50	8	4	³ / ₈ -16
SPB-32-OPN	2 L PD	2.000	2.125	3.63	6.00	2.25	2.44	4.75	.10	.89	8	4	1/2-13

Part Number (3)						_	_				
Super Ball Bushing	60 Case LinearRace Diameter	E	E1	E2	F1	G	G1	N		Pillow Block Mass	Dynamic ⁽¹⁾ Load Capacity
Pillow Block	d	±.010	±.010	Min.				Hole	Bolt	lb	lb _f
SPB-8-OPN	.4995/.4990	1.000	1.688	.31	.25	.69	.75	.16	#6	.2	230
SPB-10-OPN	.6245/.6240	1.125	2.125	.37	.28	.42	.53	.19	#8	.4	320
SPB-12-OPN	.7495/.7490	1.250	2.375	.43	.31	1.08	.55	.19	#8	.5	470
SPB-16-OPN	.9995/.9990	1.750	2.875	.56	.38	1.37	.76	.22	#10	1.0	780
SPB-20-OPN	1.2495/1.2490	2.000	3.500	.62	.44	1.73	1.05	.22	#10	2.1	1170
SPB-24-OPN	1.4994/1.4989	2.500	4.125	.75	.50	2.03	1.12	.28	.25	3.2	1560
SPB-32-OPN	1.9994/1.9987	3.250	5.250	1.00	.63	2.50	1.44	.41	.38	6.0	2350

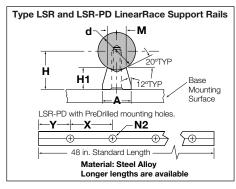
Load/Life Graph (Lines indicate limiting load for given Ball Bushing Pillow Block)

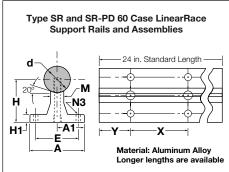
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

Where K_0 can be determined from the Polar Graph to the right.


Page 62

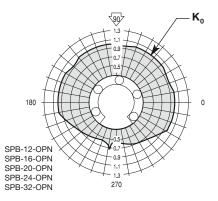

Website: www.thomsonballbushing.com

Super Ball Bushing Bearing

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LS	Type LSR and LSR-PD 60 Case* LinearRace*Support Rails (Dimensions in inches)								nches)		
LSR Standard	LSR-PD Standard	Nominal LinearRace	н	H1 A M		Mounti	ng Holes	х	Υ	LSR	
Without Holes	w/PreDrilled Holes	Diameter d	±.002		,	141	N2 Hole	N1 Bolt	^		Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	⁵ ∕16 -18	6	3	1.27
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68
LSR-32	LSR-32-PD	2.000	1.750	.85	1.18	.88	.53	1/2-13	8	4	2.59

Туре	SR/ SR-F	D Line	arRace	Supp	oort	Rails	and A	Assen	nblie	S	(C	imensions	in	inc	ches)
SR	SR-PD With	Assy.	Nom. LinearRace	Н	H1	Α	A1	Е	М	N	3	LinearRace Mounting	Х	Υ	SR
Without Holes	PreDrilled Holes	W/Solid LinearRace	Dia. d	±.002			±.002			Hole	Bolt	Bolt N1			Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	.56	.34	5/16	5⁄46-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3%-16 x 2.00	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

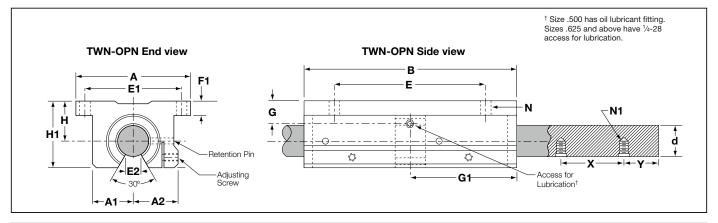

- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 57. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.
- ⁽³⁾ For part number description and specifications see page 56 and 57.
 Note: For additional technical data, see Engineering Support Appendix.

	Standard Without Holes	Standard With PreDrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ⁽²⁾ in	Maximum Single Piece Length ⁽²⁾ in
Γ	LSR	LSR-PD	-	48	96
Γ	SR	SR-PD	SRA	24	72

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

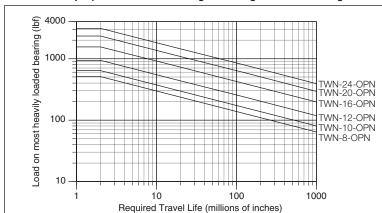




Super Ball Bushing Twin Pillow Blocks

(Open Type)

for Continuously Supported Applications



Super Ball Bushing* Twin Pillow Blocks (Open Type, seal at both ends) and 60 Case* LinearRace*								Race*	(Dimensions in inches)				
Part Nun	nber ⁽³⁾		Н	H1	_	۸1	A2	В	60 Case	60 Case			Case
Super Ball				п	Α	A1	A2		LinearRace Minimum			_inea	arRace
Bushing Twin	60 Case	Nominal							Depth of	Mass	Mc	Mounting Hol	
Pillow Block	LinearRace	Diameter	±.003						Hardness	lb/in	X	Υ	N1
TWN-8-OPN	1/2 L PD	.500	.687	1.13	2.00	.69	.75	3.50	.06	.06	4	2	#6-32
TWN-10-OPN	5/8 L PD	.625	.875	1.44	2.50	.88	.94	4.00	.06	.09	4	2	#8-32
TWN-12-OPN	3/4 L PD	.750	.937	1.56	2.75	.94	1.00	4.50	.06	.13	6	3	#10-32
TWN-16-OPN	1 L PD	1.000	1.187	2.00	3.25	1.19	1.25	6.00	.08	.22	6	3	1/4-20
TWN-20-OPN	1 1/4 L PD	1.250	1.500	2.56	4.00	1.50	1.63	7.50	.08	.35	6	3	⁵ /16 -18
TWN-24-OPN	1 1/2 L PD	1.500	1.750	2.94	4.75	1.75	1.88	9.00	.08	.50	8	4	³ %-16

Part Number (3) Super Ball Bushing Twin	60 Case LinearRace Diameter Tolerance	E	E1	E2	F1	G	G1	N		Pillow Block Mass	Dynamic ⁽¹⁾ Load Capacity
Pillow Block	d	±.010	±.01	Min.				Hole	Bolt	lb	lb _f
TWN-8-OPN	.4995/.4990	2.500	1.688	.31	.25	.56	1.75	.16	#6	.4	460
TWN-10-OPN	.6245/.6240	3.000	2.125	.37	.28	.67	2.00	.19	#8	.8	640
TWN-12-OPN	.7495/.7490	3.500	2.375	.43	.31	.94	2.25	.19	#8	1.0	940
TWN-16-OPN	.9995/.9990	4.500	2.875	.56	.38	1.20	3.00	.22	#10	2.0	1560
TWN-20-OPN	1.2495/1.2490	5.500	3.500	.62	.44	1.50	3.75	.22	#10	4.2	2340
TWN-24-OPN	1.4994/1.4989	6.500	4.125	.75	.50	1.75	4.50	.28	.25	6.7	3120

Load/Life Graph (Lines indicate limiting load for given Ball Bushing Pillow Block)

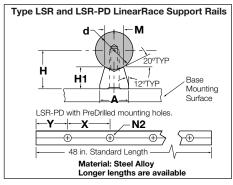
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

Load on most heavily loaded bearing = maximum applied load/ K_{o} .

Where K_0 can be determined from the Polar Graph to the right.


Page 64

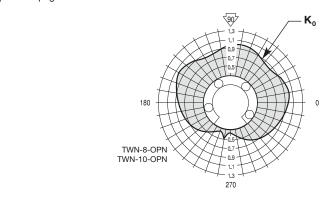
Website: www.thomsonballbushing.com

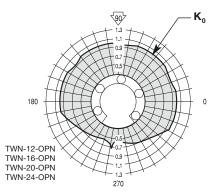
Super Ball Bushing Bearing

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LS	Type LSR and LSR-PD 60 Case* LinearRace* Support Rails (Dimens								sion	ions in inches)		
LSR Standard	LSR-PD Standard	Nominal LinearRace	Н	H1	Α	М	Mounting Holes		Х	Υ	LSR	
Without Holes	w/PreDrilled Holes	Diameter d	±.002	'''		IVI	N2 Hole	N1 Bolt	^	'	Mass lb/ft	
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32	
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49	
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59	
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01	
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	5/16-18	6	3	1.27	
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68	

Туре	Type SR/ SR-PD LinearRace Support Rails and Assemblies (Dimensions in inches)														
SR Without Holes	SR-PD With PreDrilled Holes	Assy. W/Solid LinearRace	Nom. LinearRace Dia. d	H ±.002	H1	Α	A1 ±.002	Е	М	N	3 Bolt	LinearRace Mounting Bolt N1	Х	Υ	SR Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	.56	.34	5/16	5/16-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	%-16 x 2.00	8	4	2.60


⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.


⁽⁹⁾ For part number description and specifications see page 56 and 57. Note: For additional technical data, see **Engineering Support Appendix.**

Standard Without Holes	Standard With PreDrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ⁽²⁾ in	Maximum Single Piece Length ⁽²⁾ in
LSR	LSR-PD	-	48	96
SR	SR-PD	SRA	24	72

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

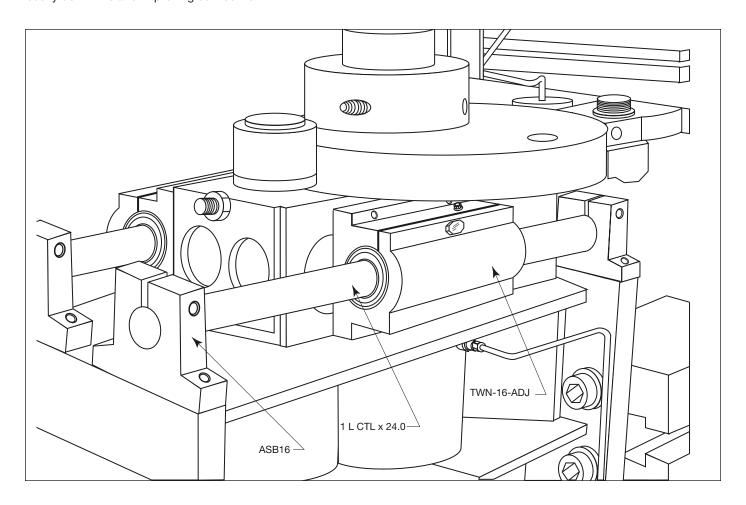
For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 57. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.

Cam-Actuated Part Transfer Mechanism for Multiple-Transfer Press

Objective

Improve production rate and increase the service life of a transfer table mechanism.

Solution


Replace the conventional linear bearings with Adjustable Super Ball Bushing* Twin Pillow Blocks. Bearing service life increased to 5 years.

Products Specified

- 2 TWN16-ADJ (Super Ball Bushing Twin Pillow Blocks)
- 4 ASB16 (60 Case* LinearRace* End Support Blocks)
- 2 1 L CTL x 24.00 in (60 Case LinearRace)

Benefits

The table achieved maximum cycle efficiency by reducing costly downtime and improving service life.

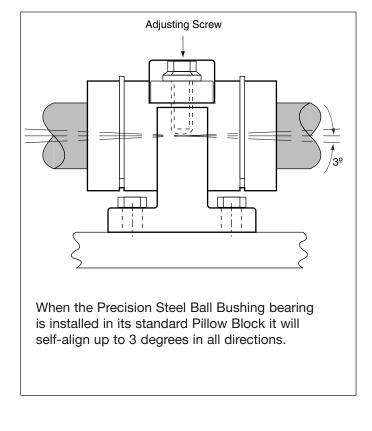
Precision Steel Ball Bushing Bearing Products

Thomson Precision Steel Ball Bushing* Bearing Products offer:

- a coefficient of friction as low as .001.
 When replacing high friction plain bearings, Precision Steel Ball Bushing bearings dramatically improve machine productivity and efficiency.
- all-steel construction, for maximum system rigidity.
- two accuracy classes allowing for immediate improvements in system positioning and repeatability.
- availability in fourteen bore sizes and nine configurations.

- the RoundRail* Advantage which minimizes installation time and cost.
- steady state travel speeds up to 10 ft/s and accelerations to 450 ft/s2 without the use of derating factors.
- an operating temperature up to 600° F.
- availability in a self-aligning pillow block housing for ease of installation and use.
- worldwide availability from over 1800 authorized distributors.

Precision Steel Ball Bushing Bearings


The basis for the performance of all Precision Steel Ball Bushing* bearings is a simple but ingenious system of ball recirculation that permits almost frictionless, unlimited travel.

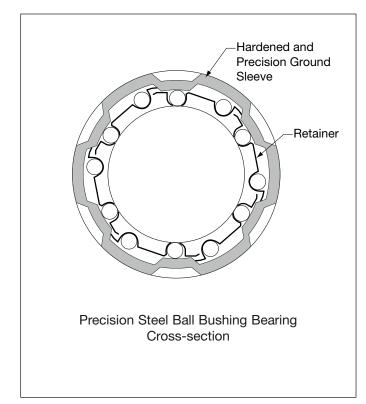
Replace High Friction Plain Bearings

Plain bearings cause friction, stick-slip, binding and chatter. The Precision Steel Ball Bushing bearing's patented ball recirculation virtually eliminates wear and provides a constant coefficient of friction as low as .001. This dramatic reduction in friction allows the designer to use smaller less expensive drive motors, ball screws, belts, linkages and gears.

Lasting Precision Alignment

High friction plain bearings cause wear resulting in a loss in system alignment and repeatability. Each Precision Steel Ball Bushing bearing is manufactured with high quality bearing steel that is hardened and precision ground. The rolling elements of each Ball Bushing bearing are precision ground bearing balls that recirculate freely into and out of the load zone. The balls are guided through their recirculation path by a steel retainer and hardened sleeve. The inherent non-wear characteristics of each Precision Steel Ball Bushing bearing assures maximum system accuracy and repeatability.

High Travel Speeds


Precision Steel Ball Bushing can operate at travel rates as high as 10 ft/s and accelerations as high as 450 ft/s2. When replacing inefficient v-way or flat-way systems, this travel rate capability provides immediate improvements in machine efficiency and productivity.

Ease of Installation

The Precision Steel Ball Bushing bearing can be retained in a housing, internally or externally. The retaining ring groove on the outside diameter allows the bearing to be captured and retained by an external retaining ring. If internal retention is required, the Ball Bushing bearing can be installed in a housing and held in place with an internal retaining ring.

Protection from Contamination

Precision Steel Ball Bushing bearings most popular sizes are available with double acting integral wipers that keep out contamination, retain lubrication and maximize travel life.

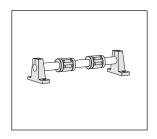
Precision Steel Ball Bushing Bearing Products

Table of Contents

Precision Steel Ball Bushing* Bearing Products	
or End Supported Applications	70

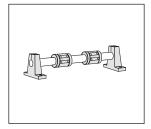
Precision Steel Ball Bushing bearing closed type products have been designed for use in end supported applications, where spanning or bridging a gap is required. End supported products are available in a variety of configurations and sizes. For a complete overview of each Precision Steel Ball Bushing bearing end supported product, simply turn to page 70. For complete product specifications see the pages referenced below.

Part Number Description and Specification72
End Support Product Specifications
Precision Steel Ball Bushing Bearings (Closed Type)
Extra Precision Steel Ball Bushing Bearings (Closed Type)76
Adjustable Precision Steel Ball Bushing Bearings
(Closed Type)
Precision Steel Ball Bushing Pillow Blocks
(Closed and Adjustable Type)80
Miniature Instrument Ball Bushing Bearings82
Die Set Ball Bushing Bearings84

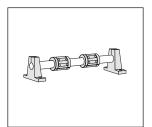


Precision Steel Ball Bushing bearing open type products are specifically designed for use in continuously supported applications where rigidity and stiffness are required. Continuously supported products are available in a variety of configurations and sizes. For a complete overview of all Precision Steel Ball Bushing bearing continuously supported products turn to page 86. For complete product specifications see the pages referenced below. Product Overview

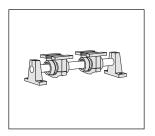
Product Overview
Part Number Description and Specification
Continuously Supported Product Specifications
Precision Steel Ball Bushing Bearings (Open Type) 90
Precision Steel Ball Bushing Bearing
Pillow Blocks (Open Type)92


Precision Steel Ball Bushing Bearings and Pillow Blocks for End Supported Applications

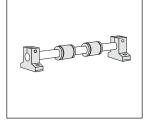
Precision Steel Ball Bushing Bearings (Closed type) Features:


- Coefficient of friction as low as .001.
- Load capacity range from 19 to 5,000 lbf.
- High operating temperature capability.
- Available in sizes 1/4 to 4 inch bore diameter.
- Can be mounted in a custom housing.
- Travel speeds up to 10 ft/s.

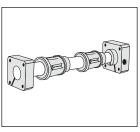
- Available in corrosion resistant stainless steel for diameters up to 1 inch.
- All steel construction for increased rigidity.
- Sizes 1/2, 3/4 and 1 inch available with integral, double acting wipers.


Extra Precision Steel Ball Bushing Bearings (Closed type)

- Increased precision for high accuracy positioning and repeatability
- Coefficient of friction as low as .001.
- Load capacity range from 19 to 5,000 lbf.
- High operating temperature capability.
- Available in sizes 1/4 to 4 inch bore diameter.
- Can be mounted in a custom housing.
- Travel speeds up to 10 ft/s.
- Available in corrosion resistant stainless steel for diameters up to 1 inch.
- All steel construction for increased rigidity.
- Sizes 1/2, 3/4 and 1 inch available with integral, double acting wipers.


Adjustable Precision Steel Ball Bushing Bearings (Closed Type) Features:

- Adjustment capability provides minimum 60 Case* LinearRace* shaft and bearing clearance for improvements in positioning accuracy and repeatability.
- Coefficient of friction as low as .001.
- Load capacity range from 85 to 5,000 lbf.
- High operating temperature capability.
- Available in sizes 1/2 to 4 inch bore diameter.
- Can be mounted in a custom housing.
- Travel speeds up to 10 ft/s.
- All steel construction for increased rigidity.
- Available in corrosion resistant stainless steel for diameters up to 1 inch.

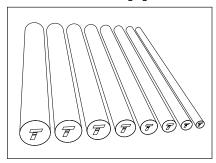

Precision Steel Ball Bushing Pillow Blocks (Closed and Adjustable Type) Features:

- Coefficient of friction as low as .001.
- Load capacity range from 85 to 1,100 lbf.
- High operating temperature capability.
- Available in sizes 1/2 to 2 inch bore diameter.
- Self-aligning for easy installation.
- Travel speeds up to 10 ft/s.
- Pillow Blocks are available with corrosion resistant stainless steel Ball Bushing bearings up to 1 inch.
- Easily mounted and secured with four mounting bolts.
- All metal construction for increased rigidity.
- Available with integral, double acting seals.
- Adjustment capability provides minimum 60 Case LinearRace and bearing clearance for improvements in positioning accuracy and repeatability.

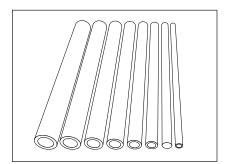
Miniature Instrument Ball Bushing Bearings Features:

- Available in sizes 1/8, 3/16 and 1/4 inch bore diameter.
- Available with a matched 60 Case LinearRace
- Coefficient of friction as low as .001.
- Compact size for low inertia and weight.
- Precision bearing balls, sleeve and 60 Case LinearRace manufactured of corrosion resistant stainless steel.
- Load Capacity range between 7 and 19 lbf.

Die Set Ball Bushing Bearings Features:

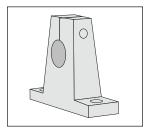

- Available in sizes 1, 11/4, 11/2 and 2 inch bore diameter.
- Load Capacity range between 350 and 1,100 lbf.
- All steel construction for maximum rigidity.
- Travel speeds up to 10 ft/s.

- Easily mounted by simply bolting toe clamps in place.
- Can be mounted perpendicular to mounting surface.
- High operating temperature capability.
- Coefficient of friction as low as .001.

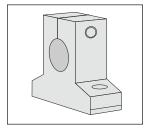


60 Case LinearRace Shafting for End Supported Applications

Solid 60 Case* LinearRace* Shafting Features:


- Diameter range between 3/16 and
- Roundness 80 millionths of an inch.
- Case hardness 60 HRC minimum.
- Surface finish 12 Ra microinch. Available in corrosion resistant
- 440C stainless steel (50 HRC minimum).
- Available with PrePlate* chrome
- Standard straightness is .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case Tubular Lite* LinearRace Shafting Features:


- Hollow inner diameter reduces weight and inertia.
- Diameter range between 3/4 and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 58 HRC minimum.
- Surface finish 12 Ra microinch.
- Available with Preplate chrome option.
- Standard straightness is .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

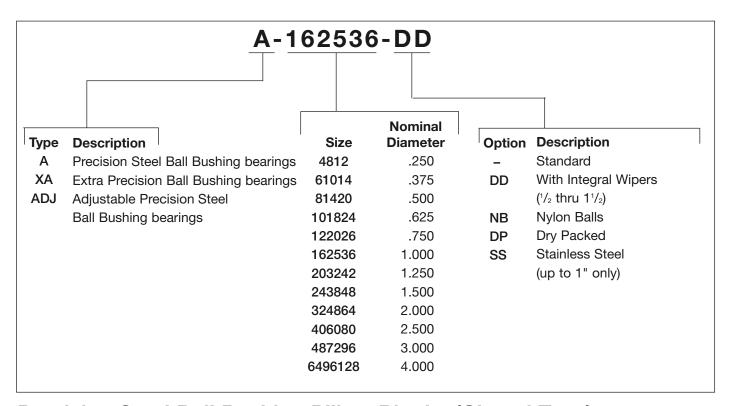
60 Case LinearRace Supports For End Supported Applications

SB 60 Case LinearRace End Support Block **Features:**

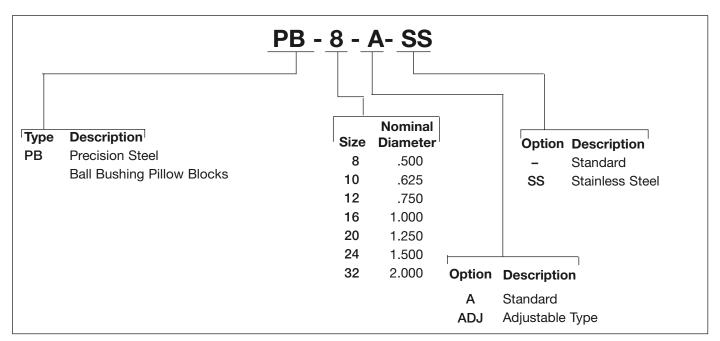
- Size range between 1/4 and 2 inch.
- Easily secured with two mounting bolts.
- Malleable iron alloy for sizes 1/2 to 2 inch diameter.
- Protected by corrosion resistant coating.
- · Light weight, high strength aluminum alloy construction for sizes 1/4 and 3/8 inch.

ASB Low Profile 60 Case LinearRace End Support Block Features:

- Size range between 1/4 and 11/2 inch.
- Low profile design.
- Easily secured with two mounting bolts.
- Protected by corrosion resistant anodized coating.
- · Light weight, high strength aluminum alloy construction.



FSB Flanged 60 Case LinearRace End Support Block Features:


- Available in 1/2, 3/4, 1 and 11/4 inch diameters.
- Flanged mounting surface for easy assembly.
- Easily secured with four mounting bolts.
- Designed specifically for use with Super Smart Flanged Pillow Blocks
- Protected by corrosion resistant coating.
- · Light weight, high strength aluminum alloy construction.

Part Number Description and Specification: Precision Steel Ball Bushing* Bearings (Closed Type) for End Supported Applications

Precision Steel Ball Bushing Pillow Blocks (Closed Type) for End Supported Applications

Page 72

Part Number Description and Specification:

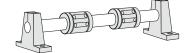
60 Case LinearRace for End Supported Applications

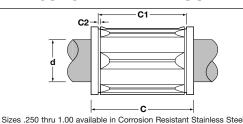
	1 L-SS-CTL											
Size	Nom. Dia.	Size	Nom. Dia.	Class	Description	Option		Туре				
1/4	.250	1 1/4	1.250	S	For use with A type ball bushings	_	Carbon Steel	CTL-	Cut to			
3/8	.375	1 1/2	1.500	L	For use with XA, Open and Adjustable	SS	440C Stainless Steel		Length			
1/2	.500	2	2.000		Ball Bushing bearings and Pillow Blocks	316SS	316 Stainless Steel	RL-	Random			
5/8	.625	2 1/2	2.500		as well as Super Ball Bushing* bearings and Super Smart Ball Bushing* bearings	TU	Tubular Lite		Length			
3/4	.750	3	3.000		and Super Smart ball bushing bearings	CPPE	Chrome Plated w/	SM-	Special			
1	1.000	4	4.000	D	For use with Die Set Ball Bushing bearings		Plain Ends		Machined			

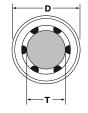
						60 (Case* LinearRa	ace* Class	L L	
Part Number			Part Number		Part Number		Part Number		Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class L	Max. Length in.	Stainless Steel 60 case LinearRace	Max. Length in.	Chrome Plated 60 Case LinearRace	Max. Length in.	60 Case Tubular Lite 60 Case LinearRace	Max. Length in.	Chrome Plated Tubular Lite 60 Case LinearRace	Max. Length in.
1/4 L	.2495/.2490	96	1/4 L SS	60	1/4 L CPPE	92				
3/8 L	.3745/.3740	180	3/8 L SS	180	3/8 L CPPE	166				
1/2 L	.4995/.4990	180	1/2 L SS	180	1/2 L CPPE	168				
5/8 L	.6245/.6240	180	5/8 L SS	180	5/8 L CPPE	178				
3/4 L	.7495/.7490	204	3/4 L SS	180	3/4 L CPPE	178	3/4 L TU	180	3/4 L TU CPPE	178
1 L	.9995/.9990	204	1 L SS	180	1 L CPPE	178	1 L TU	180	1 L TU CPPE	178
1 1/4 L	1.2495/1.2490	204	1 1/4 L SS	180	1 1/4 L CPPE	178				
1 1/2 L	1.4994/1.4989	204	1 1/2 L SS	180	1 1/2 L CPPE	178	1 1/2 L TU	180	1 1/2 L TU CPPE	178
2 L	1.9994/1.9987	204	2 L SS	180	2 L CPPE	178	2 L TU	180	2 L TU CPPE	178
2 1/2 L	2.4993/2.4985	204	2 1/2 L SS	180	2 1/2 L CPPE	178	2 1/2 L TU	180	2 1/2 L TU CPPE	178
3 L	2.9992/2.9983	204	-	-	3 L CPPE	178	3 L TU	180	3 L TU CPPE	178
4 L	3.9988/3.9976	216	-	_	4 L CPPE	178	4 L TU	180	4 L TU CPPE	178

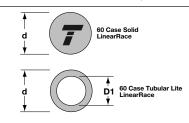
60 Case L	inearRace	Class	S	
Part Number			Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class S	Max. Length in.	Stainless Steel LinearRace	Max. Length in.
1/4 S	.2490/.2485	96	1/4 S SS	168
3/8 S	.3740/.3735	168	3/8 S SS	168
1/2 S	.4990/.4985	168	1/2 S SS	168
5/8 S	.6240/.6235	180	5/8 S SS	168
3/4 S	.7490/.7485	180	3/4 S SS	168
1 S	.9990/.9985	180	1 S SS	168

60 Case L	inearRace (Class S		
Part Number			Part Number	
60 Case Solid LinearRace	60 Case LinearRace Diameter Class S	Max. Length in.	Stainless Steel LinearRace	Max. Length in.
1 1/4 S	1.2490/1.2485	180	1 1/4 S SS	168
1 1/2 S	1.4989/1.4984	180	1 1/2 S SS	168
2 S	1.9987/1.9980	180	2 S SS	168
2 1/2 S	2.4985/2.4977	180	2 1/2 S SS	168
3 S	2.9983/2.9974	168	_	-
4 S	3.9976/3.9964	180	-	_

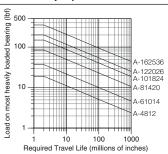

60 Case Line	arRace Class D)
Part Number		
60 Case Solid LinearRace	60 Case LinearRace Diameter Class D	Max. Length in.
1 D	1.0003/1.0000	180
1 1/4 D	1.2503/1.2500	180
1 1/2 D	1.5003/1.5000	180
2 D	2.0003/2.0000	180

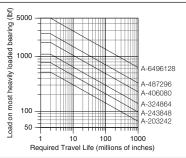

60 Case LinearRace Support Blocks for End Supported Applications


ASB-16 Type Nom. Nom. Nom. Size Dia. Size Dia. Size Dia. **ASB** Low Profile 60 Case LinearRace End Support Block 20 1.250 .625 Standard 60 Case LinearRace End Support Block .250 10 SB 6 .375 12 .750 24 1.500 **FSB** Flanged 60 Case LinearRace End Support Block .500 **16** 1.000 32 2.000 8



Precision Steel Ball Bushing Bearings (Closed Type) for End Supported Applications




Precision Steel Ball Bushing* Bearings (Closed Type) and 60 Case* LinearRace* (Dimensions in inches)												
Part Number (2) Precision Steel Ball Bushing Bearing				Distance Between Retaining	Ret. Ring Groove	No.		60 Case Solid LinearRace	60 Case Tubular Lite LinearRace	60 Case Tubular Lite LinearRace		
w/o Seals	With Seals	60 Case LinearRace	Nom. Dia.	Length C	Grooves C1	min. C2	Ball Circ.	D	Mass lb/in	Mass lb/in	ID D1	
A-4812	-	1/4 L	.250	.750/.735	.515/.499	.039	3	.5000/.4996	.01	-	-	
A-61014	-	3/8 L	.375	.875/.860	.640/.624	.039	4	.6250/.6246	.03	-	_	
A-81420	A-81420-DD	1/2 L	.500	1.250/1.235	.967/.951	.046	4	.8750/.8746	.06	-	_	
A-101824	-	5/8 L	.625	1.500/1.485	1.108/1.092	.056	4	1.1250/1.1246	.09	_	-	
A-122026	A-122026-DD	3/4 L	.750	1.625/1.610	1.170/1.154	.056	5	1.2500/1.2496	.13	.08	.46/.41	
A-162536	A-162536-DD	1 L	1.000	2.250/2.235	1.759/1.741	.068	5	1.5625/1.5621	.22	.16	.62/.56	
A-203242	_	1 1/4 L	1.250	2.625/2.605	2.009/1.991	.068	6	2.0000/1.9995	.35	_	_	
A-243848	-	1 1/2 L	1.500	3.000/2.980	2.415/2.397	.086	6	2.3750/2.3745	.50	.33	.93/.84	
A-324864	_	2 L	2.000	4.000/3.980	3.195/3.177	.103	6	3.0000/2.9994	.89	.54	1.31/1.18	
A-406080	_	2 1/2 L	2.500	5.000/4.975	3.978/3.958	.120	6	3.7500/3.7492	1.39	.75	1.84/1.66	
A-487296	_	3 L	3.000	6.000/5.970	4.728/4.708	.120	6	4.5000/4.4990	2.00	1.11	2.20/1.80	
A-6496128	_	4 L	4.000	8.000/7.960	6.265/6.235	.139	6	6.0000/5.9988	3.56	1.56	3.30/2.70	

Part Number ⁽²⁾ Precision Steel Ball Bushing Bearing		∃		nmended ng Bore	60 Case LinearRace Diameter	Precision Steel Ball Bushing Bearing/	Precision Steel Ball Bushing Bearing	Dynamic ⁽¹⁾ Load Capacity
w/o Seals	With Seals	T	Normal Fit	Press Fit	d	LinearRace Fit Up‡	Mass lb	lb _f
A-4812	-	.2500/.2495	.5005/.5000	.4995/.4990	.2490/.2485	.0015C/.0005C	.02	19
A-61014	-	.3750/.3745	.6255/.6250	.6245/.6240	.3740/.3735	.0015C/.0005C	.06	37
A-81420	A-81420-DD	.5000/.4995	.8755/.8750	.8745/.8740	.4990/.4985	.0015C/.0005C	.08	85
A-101824	-	.6250/.6245	1.1255/1.1250	1.1245/1.1240	.6240/.6235	.0015C/.0005C	.16	150
A-122026	A-122026-DD	.7500/.7495	1.2505/1.2500	1.2495/1.2490	.7490/.7485	.0015C/.0005C	.21	200
A-162536	A-162536-DD	1.0000/.9995	1.5630/1.5625	1.5620/1.5615	.9990/.9985	.0015C/.0005C	.38	350
A-203242	-	1.2500/1.2494	2.0010/2.0000	1.9993/1.9983	1.2490/1.2485	.0015C/.0004C	1.10	520
A-243848	-	1.5000/1.4994	2.3760/2.3750	2.3743/2.3733	1.4989/1.4984	.0016C/.0005C	1.43	770
A-324864	-	2.0000/1.9992	3.0010/3.0000	2.9992/2.9982	1.9987/1.9980	.0020C/.0005C	2.75	1100
A-406080	_	2.5000/2.4990	3.7510/3.7500	Net Newsell	2.4985/2.4977	.0023C/.0005C	5.50	1800
A-487296	-	3.0000/2.9988	4.5010/4.5000	Not Normally Recommended	2.9983/2.9974	.0026C/.0005C	9.50	2600
A-6496128	-	4.0000/3.9980	6.0010/6.0000	necommended	3.9976/3.9964	.0036C/.0004C	20.20	5000

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

[‡] P=Preload, C=Clearance

Determining Ball Bushing Bearing Size

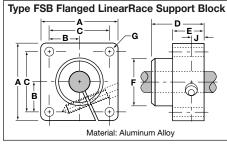
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

Where K₀ can be determined from the Polar Graph to the right.

Page 74

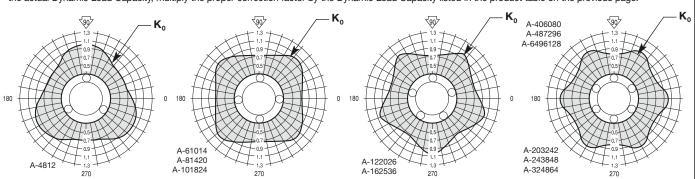

60 Case LinearRace Support Blocks for End Supported Applications

Type SB LinearRace Support Block

Type S	Type SB 60 Case* LinearRace* End Support Blocks (Dimensions in inches													
Part (2)	Nominal LinearRace Diameter	Н	H1	H2	Α	A2	В	E	N3		Wt.			
No.	d	±.002						±.010	Hole	Bolt	lb			
SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03			
SB-6	.375	.750	1.19	.25	1.63	.69	.56	1.250	.16	#6	.05			
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30			
SB-10	.625	1.000	1.75	.31	2.50	.88.	.69	1.880	.22	#10	.40			
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.50			
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.00			
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.00			
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.60			
SB-32	2.000	2.500	4.50	.63	6.00	2.63	1.50	4.500	.41	.38	4.80			

Type ASB LinearRace Support Block H1 A1 H2 H3 Material: Aluminum Alloy

Type ASB	Type ASB 60 Case LinearRace End Support Blocks (Dimensions in inc												
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N3		Wt.			
No.	d	±.001			±.001			Hole	Bolt	lb			
ASB-4	.250	.500	.88	1.50	.750	.50	1.12	.16	#6	.06			
ASB-6	.375	.562	1.00	1.62	.813	.56	1.25	.16	#6	.08			
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11			
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22			
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44			
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16			

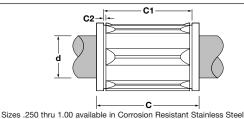


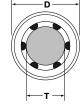
Type FSB Flanged 60 Case LinearRace End Support Blocks (Dimensions in inches												
Part	Nominal LinearRace Diameter	Α	В	С	D	Е	F	G		J	Mass	
No.	d			±.010				Hole	Bolt		lb	
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3	
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6	
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8	
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9	

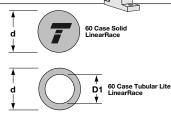
⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

Polar Graphs

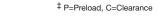
The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

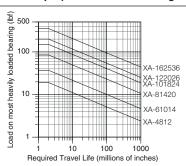


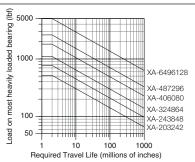

Por part number description and specifications see page 72 and 73.


Note: Precision Steel Ball Bushing bearings are available in corrosion resistant stainless steel in diameters up to 1 inch. Dynamic load ratings are reduced by 30% when using stainless steel Ball Bushing bearings. See Engineering Support Appendix page 136. For additional technical data, see Engineering Support Appendix.

Extra Precision Steel Ball Bushing Bearings






Extra Precision Steel Ball Bushing Bearings (Closed Type) and 60 Case* LinearRace* (Dimensions in inches)												
Part Number © Extra Precision Steel Ball Bushing Bearing			Landle	Distance Between Retaining	Ret. Ring Groove	No.		60 Case Solid LinearRace	60 Case Tubular Lite LinearRace	60 Case Tubular Lite LinearRace		
w/o Wipers	With Wipers	60 Case LinearRace	Nom. Dia.	Length C	Grooves C1	min. C2	Ball Circ.	D	Mass lb/in	Mass lb/in	D1	
XA-4812	_	1/4 L	.250	.750/.735	.515/.499	.039	3	.5000/.4996	.01	_	_	
XA-61014	-	3/8 L	.375	.875/.860	.640/.624	.039	4	.6250/.6246	.03	-	_	
XA-81420	XA-81420-DD	1/2 L	.500	1.250/1.235	.967/.951	.046	4	.8750/.8746	.06	-	_	
XA-101824	_	5/8 L	.625	1.500/1.485	1.108/1.092	.056	4	1.1250/1.1246	.09	-	_	
XA-122026	XA-122026-DD	3/4 L	.750	1.625/1.610	1.170/1.154	.056	5	1.2500/1.2496	.13	.08	.46/.41	
XA-162536	XA-162536-DD	1 L	1.000	2.250/2.235	1.759/1.741	.068	5	1.5625/1.5621	.22	.16	.62/.56	
XA-203242	-	1 1/4 L	1.250	2.625/2.605	2.009/1.991	.068	6	2.0000/1.9995	.35	-	_	
XA-243848	ı	1 1/2 L	1.500	3.000/2.980	2.415/2.397	.086	6	2.3750/2.3745	.50	.33	.93/.84	
XA-324864	_	2 L	2.000	4.000/3.980	3.195/3.177	.103	6	3.0000/2.9994	.89	.54	1.31/1.18	
XA-406080	-	2 1/2 L	2.500	5.000/4.975	3.978/3.958	.120	6	3.7500/3.7492	1.39	.75	1.84/1.66	
XA-487296	-	3 L	3.000	6.000/5.970	4.728/4.708	.120	6	4.5000/4.4990	2.00	1.11	2.20/1.80	
XA-6496128	_	4 L	4.000	8.000/7.960	6.265/6.235	.139	6	6.0000/5.9988	3.56	1.56	3.30/2.70	

	Part Number ⁽²⁾ Extra Precision Steel Ball Bushing Bearing			nmended ore Diameter D	60 Case	Precision Steel Ball Bushing	Precision Steel Ball Bushing	Dynamic ⁽¹⁾ Load	
Ball Bus	hing Bearing	Bore Diameter			LinearRace Diameter	Bearing/ LinearRace	Bearing Mass	Capacity	
w/o Seals	With Seals	Т	Normal Fit	Press Fit	d	Fit Up‡	lb	lb _f	
XA-4812	-	.2500/.2497	.5005/.5000		.2495/.2490	.0010C/.0002C	.02	19	
XA-61014	_	.3750/.3747	.6255/.6250		.3745/.3740	.0010C/.0002C	.06	37	
XA-81420	XA-81420-DD	.5000/.4997	.8755/.8750		.4995/.4990	.0010C/.0002C	.08	85	
XA-101824	_	.6250/.6247	1.1255/1.1250		.6245/.6240	.0010C/.0002C	.16	150	
XA-122026	XA-122026-DD	.7500/.7497	1.2505/1.2500	Not	.7495/.7490	.0010C/.0002C	.21	200	
XA-162536	XA-162536-DD	1.0000/.9997	1.5630/1.5625	Normally	.9995/.9990	.0010C/.0002C	.38	350	
XA-203242	_	1.2500/1.2496	2.0010/2.0000	Recommended	1.2495/1.2490	.0010C/.0001C	1.10	520	
XA-243848	_	1.5000/1.4996	2.3760/2.3750		1.4994/1.4989	.0011C/.0002C	1.43	770	
XA-324864	_	2.0000/1.9996	3.0010/3.0000		1.9994/1.9987	.0013C/.0002C	2.75	1100	
XA-406080	_	2.5000/2.4995	3.7510/3.7500		2.4993/2.4985	.0015C/.0002C	5.50	1800	
XA-487296	_	3.0000/2.9994	4.5010/4.5000		2.9992/2.9983	.0017C/.0002C	9.50	2600	
XA-6496128	_	4.0000/3.9990	6.0010/6.0000		3.9988/3.9976	.0024C/.0002C	20.20	5000	

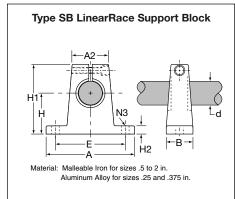
Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

Determining Ball Bushing Bearing Size

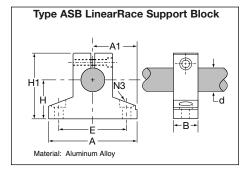
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

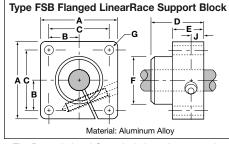
Load on most heavily loaded bearing = maximum applied load/ \mathbf{K}_{o} .


Where K_0 can be determined from the Polar Graph to the right.

Page 76

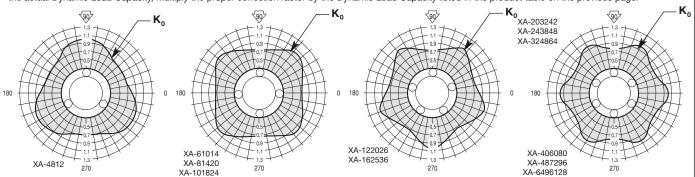


60 Case LinearRace Support Blocks


for End Supported Applications

Type SI	B 60 Case	* Linear	Race*	End Su	ipport E	Blocks		(Di	mensio	ns in i	nches)
Part (2)	Nominal LinearRace Diameter	Н	H1	H2	Α	A2	В	E	N	3	Mass
No.	d	±.002						±.010	Hole	Bolt	lb
SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03
SB-6	.375	.750	1.19	.25	1.63	.69	.56	1.250	.16	#6	.05
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.40
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.50
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.00
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.00
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.60
SB-32	2.000	2.500	4.50	.63	6.00	2.63	1.50	4.500	.41	.38	4.80

Type ASB	60 Case	LinearRa	ace End	Suppo	rt Blocks	;	(C	Dimensi	ons in i	nches)
Part (2)	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N	3	Mass
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-4	.250	.500	.88	1.50	.750	.50	1.12	.16	#6	.06
ASB-6	.375	.562	1.00	1.62	.813	.56	1.25	.16	#6	.08
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16

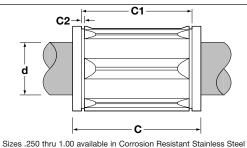


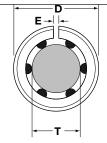
Type FSE	3 Flanged 60	Case L	inearRa	ace End	Suppo	rt Blo	cks	(Dime	ension	s in ir	nches)
Part	Nominal LinearRace Diameter	Α	В	С	D	Е	F	C	à	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

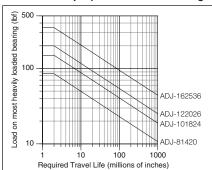


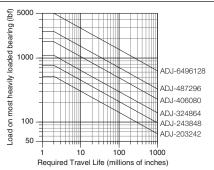

⁽²⁾ For part number description and specifications see page 72 and 73.

Note: Precision Steel Ball Bushing bearings are available in corrosion resistant stainless steel in diameters up to 1 inch. Dynamic load ratings are reduced by 30% when using stainless steel Ball Bushing bearings. See Engineering Support Appendix page 136. For additional technical data, see Engineering Support Appendix.

Adjustable Precision Steel Ball Bushing Bearings

60 Case Solid LinearRace




60 Case Tubular Lite LinearRace

Adjustable Pre	cision Steel I	Ball Bus	hing Bearing	s and 60 Ca	se* Linea	rRace*				(Dimension	ns in inches)
Part Num Precision Steel Ball Bushing Bearing	60 Case LinearRace	Nom. Dia.	Length C	Distance Between Retaining Grooves C1	Ret. Ring Groove min. C2	Min. Slot Width E	No. of Ball Circ.	60 Case LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace ID D1
ADJ-81420	1/2 L	.500	1.250/1.235	.967/.951	.046	.06	4	.04	.06	-	-
ADJ-101824	5/8 L	.625	1.500/1.485	1.108/1.092	.056	.09	4	.04	.09	-	_
ADJ-122026	3/4 L	.750	1.625/1.610	1.170/1.154	.056	.09	5	.06	.13	.08	.46/.41
ADJ-162536	1 L	1.000	2.250/2.235	1.759/1.741	.068	.09	5	.08	.22	.16	.62/.56
ADJ-203242	1 1/4 L	1.250	2.625/2.605	2.009/1.991	.068	.09	6	.08	.35	-	_
ADJ-243848	1 1/2 L	1.500	3.000/2.980	2.415/2.397	.086	.13	6	.08	.50	.33	.93/.84
ADJ-324864	2 L	2.000	4.000/3.980	3.195/3.177	.103	.13	6	.10	.89	.54	1.31/1.18
ADJ-406080	2 1/2 L	2.500	5.000/4.975	3.978/3.958	.120	.13	6	.10	1.39	.75	1.84/1.66
ADJ-487296	3 L	3.000	6.000/5.970	4.728/4.708	.120	.13	6	.10	2.00	1.11	2.20/1.80
ADJ-6496128	4 L	4.000	8.000/7.960	6.265/6.235	.139	.13	6	.10	3.56	1.56	3.30/2.70

Part Number (2)		Recommended		Precision Steel	
Precision Steel	Working Bore	Housing Bore Diameter D	60 Case LinearRace	Ball Bushing Bearing	Dynamic ⁽¹⁾ Load Capacity
Ball Bushing Bearing	Diameter T	Normal Fit	Diameter d	Mass lb	Ib _f
ADJ-81420	.5000/.4995	.8755/.8750	.4995/.4990	.08	85
ADJ-101824	.6250/.6245	1.1255/1.1250	.6245/.6240	.16	150
ADJ-122026	.7500/.7495	1.2505/1.2500	.7495/.7490	.21	200
ADJ-162536	1.0000/.9995	1.5630/1.5625	.9995/.9990	.38	350
ADJ-203242	1.2500/1.2494	2.0010/2.0000	1.2495/1.2490	1.10	520
ADJ-243848	1.5000/1.4994	2.3760/2.3750	1.4994/1.4989	1.43	770
ADJ-324864	2.0000/1.9992	3.0010/3.0000	1.9994/1.9987	2.75	1100
ADJ-406080	2.5000/2.4990	3.7510/3.7500	2.4993/2.4985	5.50	1800
ADJ-487296	3.0000/2.9988	4.5010/4.5000	2.9992/2.9983	9.50	2600
ADJ-6496128	4.0000/3.9980	6.0010/6.0000	3.9988/3.9976	20.20	5000

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

Determining Ball Bushing Bearing Size

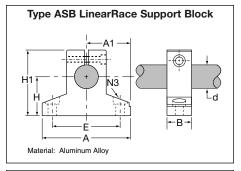
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

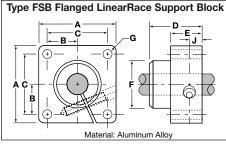
Load on most heavily loaded bearing = maximum applied

Where $K_{\scriptscriptstyle 0}$ can be determined from the Polar Graph to the right.

Page 78



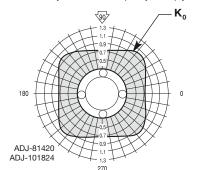
60 Case LinearRace Support Blocks for End Supported Applications

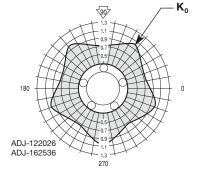

Type SB LinearRace Support Block

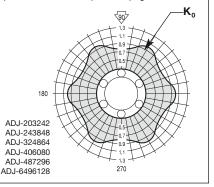
Material: Malleable Iron for sizes .5 to 2 in.
Aluminum Alloy for sizes .25 and .375 in.

Type SI	B 60 Case	* Linear	Race*	End Su	pport E	Blocks		(Di	mensio	ns in i	nches)
Part (2)	Nominal LinearRace Diameter	Н	H1	H2	Α	A2	В	E	N	3	Wt.
No.	d	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.30
SB-10	.625	1.000	1.75	.31	2.50	.88	.69	1.875	.22	#10	.40
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.50
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.00
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.00
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.60
SB-32	2.000	2.500	4.50	.63	6.00	2.63	1.50	4.500	.41	.38	4.80

Type ASB	60 Case	LinearRa	ace End	l Suppo	rt Blocks	;	(C	Dimensi	ons in i	nches)
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N	3	Wt.
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16

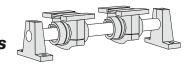

Type FSB	Flanged 60 (Case Li	nearRa	ce End	Suppo	rt Blo	cks	(Dime	ension	s in ir	nches)
Part (2)	Nominal LinearRace Diameter	Α	В	С	D	Е	F	G	à	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

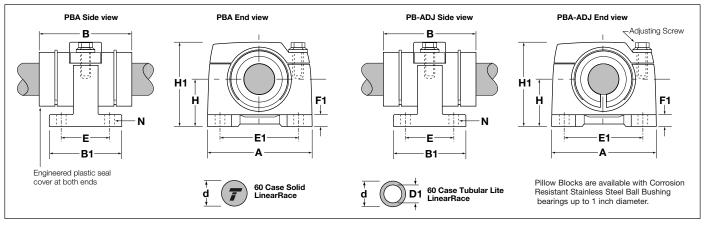

(1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.


Note: Precision Steel Ball Bushing bearings are available in corrosion resistant stainless steel in diameters up to 1 inch. Dynamic load ratings are reduced by 30% when using stainless steel Ball Bushing bearings. See Engineering Support Appendix page 136. For additional technical data, see Engineering Support Appendix.

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

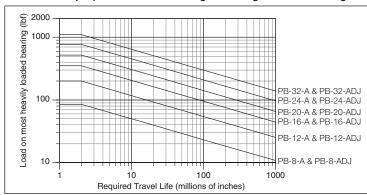




 $^{^{\}scriptscriptstyle{(2)}}$ For part number description and specifications see page 72 and 73.

Precision Steel Ball Bushing Pillow Blocks

(Closed and Adjustable Type) for End Supported Applications



Precision S	teel Ball B	ushing Pillo	w Blocks (Closed a	nd Adj	ustab	le Type, seal	at both ends)		(Dimensions	in inches)
	Part Nu	mber (2)			Н	H1						
Precision Steel Ball Bushing Pillow Block	60 Case* LinearRace* Class S	Precision Steel Ball Bushing Pillow Block Adjustable	60 Case LinearRace Class L	Nom. Dia.	±.005	пі	Class S 60 Case LinearRace Diameter	Class L 60 Case LinearRace Diameter d	60 Case LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace Mass Ib/in	60 Case Tubular Lite LinearRace ID D1
PB-8-A	1/2 S	PB-8-ADJ	1/2 L	.500	.875	1.63	.4990/.4985	.4995/.4990	.04	.06	-	-
PB-12-A	3/4 S	PB-12-ADJ	3/4 L	.750	1.125	2.13	.7490/.7485	.7495/.7490	.06	.13	.08	.46/.41
PB-16-A	1 S	PB-16-ADJ	1 L	1.000	1.375	2.56	.9990/.9985	.9995/.9990	.08	.22	.16	.62/.56
PB-20-A	1 1/4 S	PB-20-ADJ	1 1/4 L	1.250	1.750	3.25	1.2490/1.2485	1.2495/1.2490	.08	.35	-	-
PB-24-A	1 1/2 S	PB-24-ADJ	1 1/2 L	1.500	2.000	3.75	1.4989/1.4984	1.4994/1.4989	.08	.50	.33	.93/.84
PB-32-A	2 S	PB-32-ADJ	2 L	2.000	2.500	4.75	1.9987/1.9980	1.9994/1.9987	.10	.89	.54	1.31/1.18

	t Number ⁽²⁾	Α	В	B1	Е	E1	F1	N	I	Pillow	Dynamic ⁽¹⁾
Ball Bush Closed	ning Pillow Block Adjustable				±.010	±.010		Hole	Bolt	Block Mass Ib	Load Capacity Ib _f
PB-8-A	PB-8-ADJ	2.00	1.69	1.50	1.000	1.500	.25	.19	#8	.5	85
PB-12-A	PB-12-ADJ	2.75	2.06	2.00	1.375	2.000	.31	.22	#10	1.3	200
PB-16-A	PB-16-ADJ	3.25	2.88	2.25	1.500	2.500	.38	.28	1/4	2.1	350
PB-20-A	PB-20-ADJ	4.00	3.63	2.75	1.875	3.000	.44	.34	5/16	4.4	520
PB-24-A	PB-24-ADJ	4.75	4.00	3.00	2.000	3.500	.50	.34	⁵ ⁄16	5.7	770
PB-32-A	PB-32-ADJ	6.00	5.00	3.50	2.500	4.500	.63	.41	3/8	10.5	1100

Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

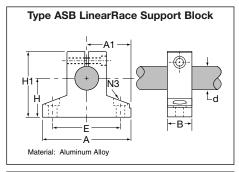
Determining Ball Bushing Bearing Size

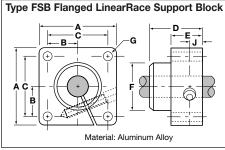
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart.

Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

Where $K_{\scriptscriptstyle 0}$ can be determined from the Polar Graph to the right.

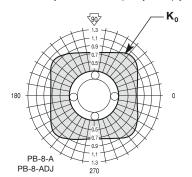

Page 80

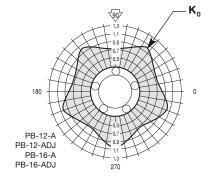

60 Case LinearRace Support Blocks for End Supported Applications

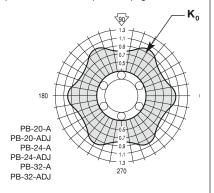
Type SB LinearRace Support Block H1 H N3 H2 Material: Malleable Iron

Type S	B 60 Case	* Linear	Race*	End Su	pport E	Blocks		(Di	mensio	ns in i	nches)
Part (2)	Nominal LinearRace Diameter	Н	H1	H2	Α	A2	В	E	N	3	Wt.
No.	d	±.002						±.010	Hole	Bolt	lb
SB-8	.500	1.000	1.63	.25	2.00	.75	.63	1.500	.19	#8	.3
SB-12	.750	1.250	2.13	.31	2.75	1.00	.75	2.000	.22	#10	.5
SB-16	1.000	1.500	2.56	.38	3.25	1.38	1.00	2.500	.28	.25	1.0
SB-20	1.250	1.750	3.00	.44	4.00	1.75	1.13	3.000	.34	.31	2.0
SB-24	1.500	2.000	3.50	.50	4.75	2.00	1.25	3.500	.34	.31	2.6
SB-32	2.000	2.500	4.50	.63	6.00	2.63	1.50	4.500	.41	.38	4.8

Type ASB	60 Case	LinearRa	ace End	Suppo	rt Blocks	1	([Dimensi	ons in i	nches)
Part ⁽²⁾	Nominal LinearRace Diameter	Н	H1	Α	A1	В	E	N	3	Wt.
No.	d	±.001			±.001			Hole	Bolt	lb
ASB-8	.500	.875	1.48	2.00	1.000	.63	1.50	.19	#8	.11
ASB-12	.750	1.125	1.95	2.50	1.250	.75	2.00	.22	#10	.22
ASB-16	1.000	1.375	2.48	3.25	1.625	1.00	2.50	.28	.25	.44
ASB-24	1.500	2.000	3.50	4.75	2.375	1.25	3.50	.34	.31	1.16

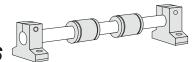

Type FSI	B Flanged 60	(Dimensions in inches)									
Part	Nominal LinearRace Diameter	Α	В	С	D	E	F	C	à	J	Mass
No.	d			±.010				Hole	Bolt		lb
FSB-8	.500	1.63	.81	1.250	.88	.50	1.00	.18	#8	.25	.3
FSB-12	.750	2.38	1.19	1.750	1.00	.63	1.25	.21	#10	.31	.6
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.8
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.9

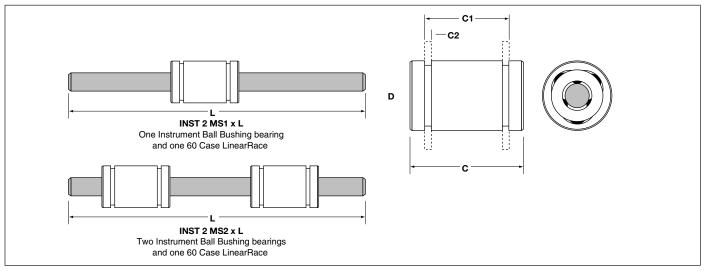

- ⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- ⁽²⁾ For part number description and specifications see page 72 and 73.


Note: Precision Steel Ball Bushing bearings are available in corrosion resistant stainless steel in diameters up to 1 inch. Dynamic load ratings are reduced by 30% when using stainless steel Ball Bushing bearings. See Engineering Support Appendix page 136. For additional technical data, see Engineering Support Appendix.

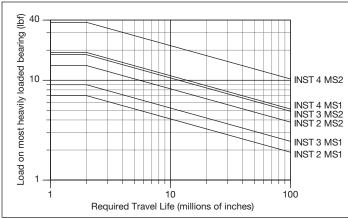
Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.





Miniature Instrument Ball Bushing Bearing and 60 Case LinearRace Sets



Miniature Inst	Miniature Instrument Ball Bushing* Bearing and 60 Case* LinearRace* Sets (Dimensions in inches)												
Part N	Number												
Ball Bus	Instrument shing and lace Sets	Nominal	Outside Diameter	Ball Bushing Bearing Length	Distance Between Retaining Rings	Ret. Ring Groove min.	Recommended [†] Housing	No. of Ball	Ball Bushing Bearing Mass	60 Case LinearRace Mass			
One Bearing	Two Bearings	Diameter	D	C	C1	C2	Bore	Circuits	lb	lb/in			
INST 2 MS1	INST 2 MS2	.1250	.3125/.3121	.500/.485	.354	.028	.3130/.3124	3	.007	.004			
INST 3 MS1	INST 3 MS2	.1875	.3750/.3746	.562/.547	.417	.028	.3755/.3749	3	.011	.008			
INST 4 MS1	INST 4 MS2	.2500	.5000/.4996	.750/.735	.499	.039	.5005/.4999	3	.025	.014			

Miniature Instrument Ball B	Miniature Instrument Ball Bushing Bearing (Dimensions in inches)												
Part Number													
Miniature Instrument Ball Bushing Bearing	Working Bore Diameter	60 Case LinearRace Part Number	LinearRace Maximum Length	60 Case LinearRace Diameter d	Instrument Ball Bushing bearing/ LinearRace Set Fit up	Dynamic ⁽¹⁾ Load Capacity Ib _f							
INST 258-SS	.1250/.1247	LRI 2	12	.1248/.1245	.0003C/.0001C	7							
INST 369-SS	.1875/.1872	LRI 3	12	.1873/.1870	.0003C/.0001C	9							
INST 4812-SS	.2500/.2497	LRI 4	12	.2498/.2495	.0003C/.0001C	19							

Load/Life Graph (Lines indicate limiting load for given Ball Bushing Bearing)

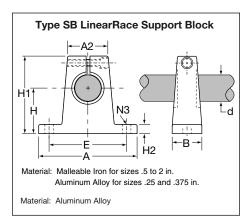
[†] Press fit not recommended

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ K_{\circ} .

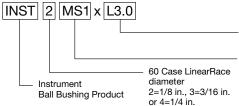
Where K_0 can be determined from the Polar Graph to the right.


Page 82

Phone: 1-800-554-8466

Website: www.thomsonballbushing.com

Miniature Instrument Ball Bushing Bearing and 60 Case LinearRace Sets



	Type SB 60 Case* LinearRace* End Support Blocks (Dimensions in inch												
	Part No.	Nominal LinearRace Diameter d	H ±.002	H1	H2	A	A2	В	±.010	Hole	I3 Bolt	Mass lb	
t	SB-4	.250	.687	1.06	.25	1.50	.63	.50	1.125	.16	#6	.03	

Type ASI	Type ASB 60 Case LinearRace End Support Blocks (Dimensions in inc											
Part	Nominal LinearRace Diameter	Н	H1	Α	A1	В	Е	N	13	Mass		
No.	d	±.001			±.001			Hole	Bolt	lb		
ASB-4	.250	.500	.88	1.50	.750	.50	1.12	.16	#6	.06		

Part Number Description

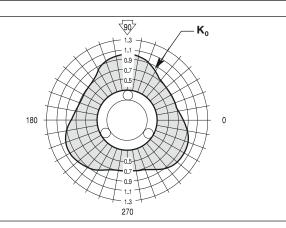
Length of 60 Case LinearRace in inches (3.0 in.)

 Type of matched set
 MS1 - one bearing and one 60 Case LinearRace

 MS2 - two bearings and one 60 Case LinearRace

60 Case LinearRace Specifications

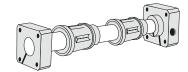
Material: 440C Stainless Steel
Hardness: 55 HRC minimum
Surface Finish: 4 R_a microinch
Straightness: .0001 inch per inch

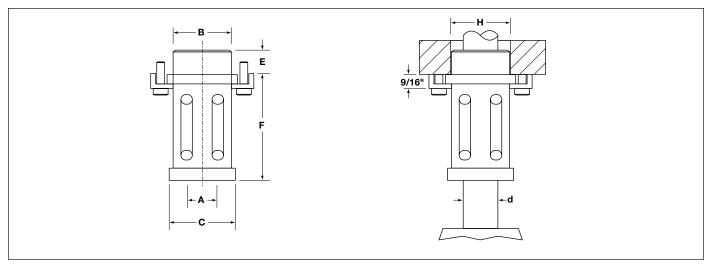

(1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches.

The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below. The dynamic load capacity for MS2 configurations are based on two bearings equally loaded.

Note: For additional technical data, see Engineering Support Appendix.

Polar Graph


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



Die Set Ball Bushing Bearings

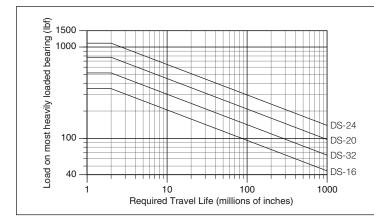

For End Supported Applications

Table 1 — I	Precision Se	ries Die	Set Ball Bushin	g* Bearings ar	nd 60 Case* Lin	earRac	e*			(Dimensions i	n inches)
Part N	umber						Ball				
DS Ball Bushing Bearing	g 60 Case No g LinearRace D		60 Case LinearRace Diameter d	Working Bore Diameter A	Ball Bushing Pilot Diameter B	O.D. C	Bushing Bearing Pilot Length	F	Recommended Mounting Hole Diameter H	Concentricity of Pilot (B) to Bearing Bore (A) (TIR)	Dynamic ⁽¹⁾ Load Capacity Ib _f
DS-16	1 D	1.000	1.0003/1.0000	.9999/.9996	1.5007/1.5003	1.91	.94	3.17	1.5005/1.5000	.0007	350
DS-20	1 1/4 D	1.250	1.2503/1.2500	1.2498/1.2495	1.7507/1.7503	2.31	1.19	3.67	1.7505/1.7500	.0007	520
DS-24	1 1/2 D	1.500	1.5003/1.5000	1.4997/1.4994	2.0007/2.0003	2.72	1.44	4.17	2.0005/2.0000	.0007	770
DS-32	2 D	2.000	2.0003/2.0000	1.9995/1.9992	2.5007/2.5003	3.53	1.94	4.42	2.5005/2.5000	.0007	1100

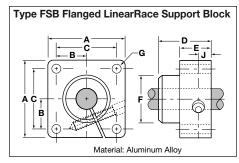
Load/Life Graph (Lines indicate limiting load for given Ball Bushing* bearing)

Determining Ball Bushing Bearing Size

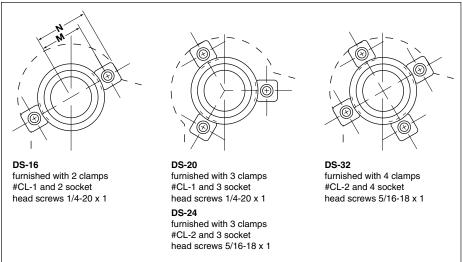
To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/K_{0*}

Where K₀ can be determined from the Polar Graph to the right.



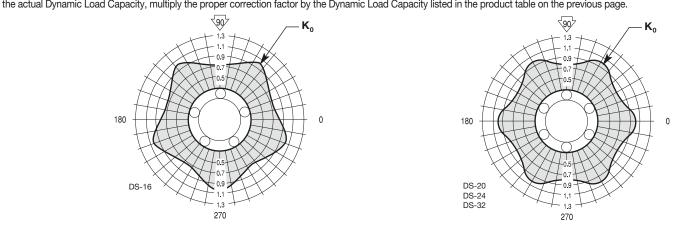
THOMSO


Phone: 1-800-554-8466

Website: www.thomsonballbushing.com

60 Case LinearRace Support Blocks for End Supported Applications

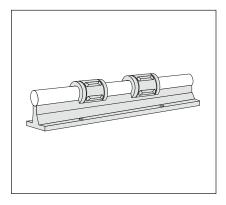
Type FSB Flanged 60 Case* LinearRace* End Support Blocks (Dimensions in inch													
Part	Nominal LinearRace Diameter	Α	В	С	D	Е	F	(G		G		Mass
No.	d			±.010				Hole	Bolt		lb		
FSB-16	1.000	2.75	1.38	2.125	1.25	.63	1.50	.27	1/4	.31	.80		
FSB-20	1.250	3.13	1.56	2.375	1.38	.75	1.75	.27	1/4	.38	.90		

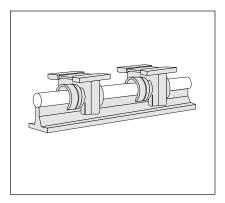

Die Set	DS (Dimens	ions in inc	ches)
Part N	umber		
DS Ball Bushing Bearing	DS-B Ball Bushing Bearing	M	N
DS-16	DS-16B	1.06	1.41
DS-20	DS-20B	1.27	1.61
DS-24	DS-24B	1.56	2.00
DS-32	DS-32B	1.94	2.38

The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.

Note: For additional technical data, see Engineering Support Appendix.

Polar Graphs


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.


⁽¹⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches.

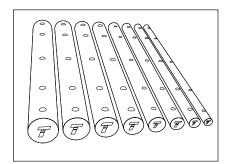
Precision Steel Ball Bushing Bearings and Pillow Blocks(Open Type) for Continuously Supported Applications

Precision Steel Ball Bushing Bearings (Open type) Features:

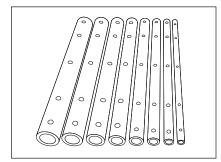
- Coefficient of friction as low as .001.
- Load Capacity range from 60 to 3,800 lb_f.
- Can be mounted in a custom housing.
- Available in sizes ½ to 4 inch diameter.
- All steel construction for maximum rigidity.
- Can be adjusted to remove clearance between the Ball Bushing bearing and 60 Case* LinearRace*.
- Available in corrosion resistant stainless steel in sizes up to 1 inch diameter.
- Travel speeds up to 10 ft/s.
- High operating temperature capability.

Precision Steel Ball Bushing Pillow Blocks (Open Type) Features:

- Self-aligning for easy installation.
- Easily secured to table surface with four mounting bolts.
- Coefficient of friction as low as .001.
- Load capacity range from 60 to 860 lb_f.
- Available in sizes ½ to 2 inch diameter.
- Available with seals at both ends.
- All steel construction for maximum rigidity.
- Can be adjusted to remove clearance between the Ball Bushing bearing and 60 Case LinearRace.
- Available with corrosion resistant stainless steel Ball Bushing bearing in sizes up to 1 inch diameter.
- Travel speeds up to 10 ft/s.

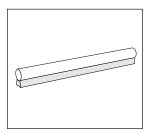


Website: www.thomsonballbushing.com

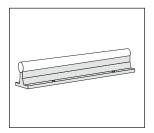

Phone: 1-800-554-8466

60 Case LinearRace (PreDrilled) for Continuously Supported Applications

60 Case* Solid LinearRace* with Mounting Holes Features:


- Radial drilled and tapped holes ready for immediate use with standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between ½ and 4 inch.
- Surface finish 12 R_a microinch.
- Hardness 60 HRC minimum.
- Roundness 80 millionths of an inch.
- Available in corrosion resistant 440C stainless steel (50 HRC minimum).
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

60 Case Tubular Lite LinearRace with Mounting Holes Features:

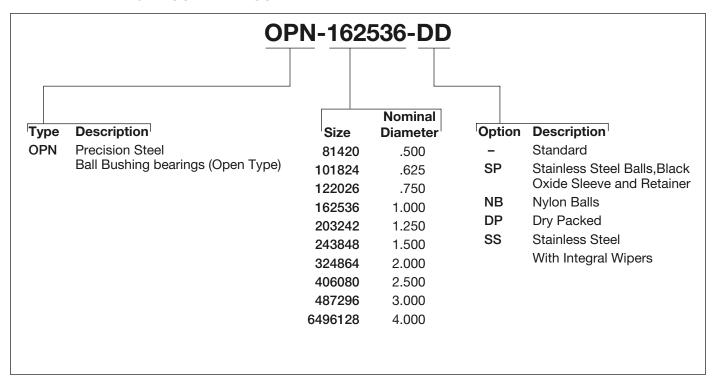

- Hollow design reduces weight and inertia.
- Radial drilled and tapped holes ready for immediate use.
- Standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between 1½ and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 58 HRC minimum.
- Surface finish 12 R_a microinch.
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

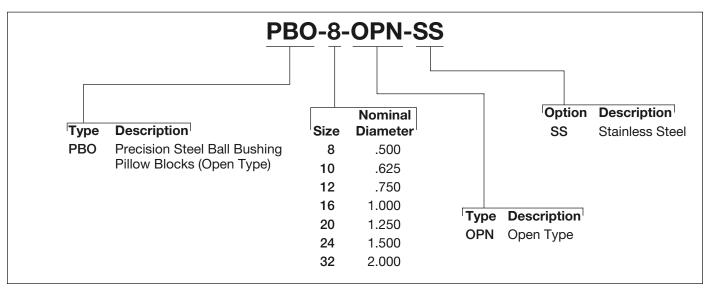
60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

LSR Low Profile 60 Case LinearRace Support Rail Features:

- Diameter range between ½ and 4 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for custom hole spacing.
- Low Profile design.
- · Unlimited travel lengths.

SR 60 Case LinearRace Support Rail SRA 60 Case LinearRace Support Rail Assembly Features:

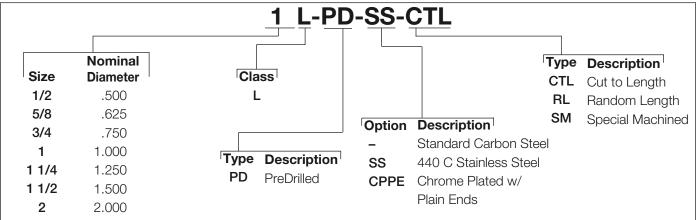

- Diameter range between ½ and 2 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for customized hole spacing.
- Available as a pre-engineered, ready to install assembly.
- Light weight, high strength aluminum alloy rail.
- Unlimited travel lengths.


Part Number Description and Specification:

Precision Steel Ball Bushing Bearings (Open Type)

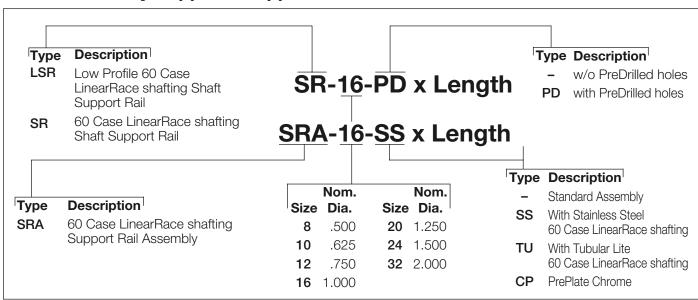
for Continuously Supported Applications

Precision Steel Ball Bushing Pillow Blocks (Open Type) for Continuously Supported Applications

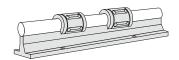


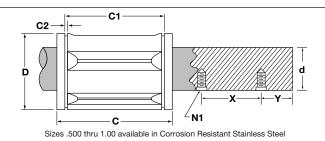
Phone: 1-800-554-8466

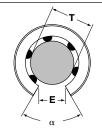
Website: www.thomsonballbushing.com


Part Number Description and Specification:

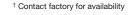
60 Case* LinearRace* (PreDrilled) for Continuously Supported Applications

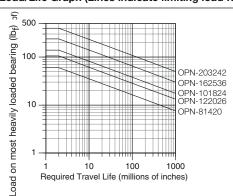

60 Case LinearRace	shafting					Table 5
Part Number			Part Number		Part Number	
60 Case Solid LinearRace shafting	60 Case LinearRace shafting Diameter Class L	Max. Length in.	Stainless Steel 60 Case LinearRace shafting	Max. Length in.	Chrome Plated 60 Case LinearRace shafting	Max. Length in.
1/2 L PD	.4995/.4990	168	_	_	1/2 L PDCPPE	168
5/8 L PD	.6245/.6240	178	5/8 L PD SS	178	5/8 L PDCPPE	178
3/4 L PD	.7495/.7490	178	3/4 L PD SS	178	3/4 L PDCPPE	178
1 L PD	.9995/.9990	178	1 L PD SS	178	1 L PDCPPE	178
1 1/4 L PD	1.2495/1.2490	178	1 1/4 L PD SS	178	1 1/4 L PDCPPE	178
1 1/2 L PD	1.4994/1.4989	178	1 1/2 L PD SS	178	1 1/2 L PDCPPE	178
2 L PD	1.9994/1.9987	178	2 L PD SS	178	2 L PDCPPE	178
2 1/2 L PD	2.4993/2.4985	178	2 1/2 L PD SS	178	2 1/2 L PDCPPE	178
3 L PD	2.9992/2.9983	178	_	_	3 L PDCPPE	178
4 L PDD	3.9988/3.9976	178	_	_	4 L PDCPPE	178

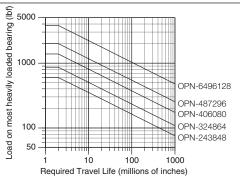

60 Case LinearRace Shaft Support Rails and Assemblies for Continuously Supported Applications



Precision Steel Ball Bushing Bearings(Open Type) For Continuously Supported Applications






Precision Steel E	Precision Steel Ball Bushing Bearings (Open Type) and 60 Case* LinearRace* (Dimensions in inches)										
Part Nur	nber (3)			Distance Between	Ret. Ring	60 Case LinearRace	60 Case Solid			Case arRace	
Precision Steel Ball Bushing Bearing	60 Case LinearRace	Nominal Diameter	Length	Retaining Rings C1	Groove min. C2	Minimum Depth of Hardness	LinearRace Mass Ib/in	Mounting H		ing Holes	
OPN-81420	1/2 L PD	.500	1.250/1.235	.967/.951	.046	.04	.06	4	2	#6-32	
OPN-101824	5/8 L PD	.625	1.500/1.485	1.108/1.092	.056	.04	.09	4	2	#8-32	
OPN-122026	3/4 L PD	.750	1.625/1.610	1.170/1.154	.056	.06	.13	6	3	#10-32	
OPN-162536	1 L PD	1.000	2.250/2.235	1.759/1.741	.068	.08	.22	6	3	1/4-20	
OPN-203242	1 1/4 L PD	1.250	2.625/2.605	2.009/1.991	.068	.08	.35	6	3	⁵ /16-18	
OPN-243848	1 1/2 L PD	1.500	3.000/2.980	2.415/2.397	.086	.08	.50	8	4	³ %-16	
OPN-324864	2 L PD	2.000	4.000/3.980	3.195/3.177	.103	.10	.89	8	4	1/2-13	
OPN-406080	2 1/2 L PD	2.500	5.000/4.975	3.978/3.958	.120	.10	1.39	8	4	5/8-11	
OPN-487296	3 L PD	3.000	6.000/5.970	4.728/4.708	.120	.10	2.00	8	4	³ / ₄ -10	
OPN-6496128	4 L PD	4.000	8.000/7.960	6.265/6.235	.139	.10	3.56	8 4 #1-		#1-8	

Part Number (3)	Working	Recommended Housing Bore	60 Case	Minimum		Number	Ball Bushing	Dynamic ⁽¹⁾
Precision Steel Ball Bushing Bearing	Bore Diameter T	Before Adjustment D	LinearRace Diameter d	Slot Width E	$\begin{array}{c} \text{Angle} \\ \text{deg} \\ \alpha \end{array}$	of Ball Circuits	Bearing Bearing Mass Ib	Load Capacity Ib _f
OPN-81420	.5005/.4995	.8760/.8740	.4995/.4990	.31	50	3	.07	60
OPN-101824	.6255/.6245	1.1260/1.1240	.6245/.6240	.38	60	3	.11	105
OPN-122026	.7505/.7495	1.2510/1.2490	.7495/.7490	.44	60	4	.17	140
OPN-162536	1.0005/.9995	1.5635/1.5615	.9995/.9990	.56	60	4	.32	240
OPN-203242	1.2506/1.2494	2.0010/1.9990	1.2495/1.2490	.63	50	5	.90	400
OPN-243848	1.5006/1.4994	2.3760/2.3740	1.4994/1.4989	.75	50	5	1.12	600
OPN-324864	2.0008/1.9992	3.0010/2.9990	1.9994/1.9987	1.00	50	5	2.16	860
OPN-406080	2.5010/2.4990	3.7515/3.7485	2.4993/2.4985	1.25	50	5	4.24	1380
OPN-487296	3.0012/2.9988	4.5015/4.4985	2.9992/2.9983	1.50	50	5	7.33	2000
OPN-6496128	4.0020/3.9980	6.0020/5.9980	3.9988/3.9976	2 00	50	5	17 25	3800

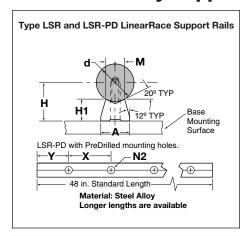
Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

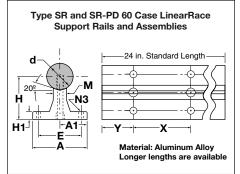
Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

Where K_0 can be determined from the Polar Graph to the right.


Page 90

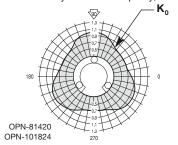

Phone: 1-800-554-8466

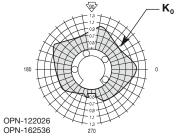
Website: www.thomsonballbushing.com

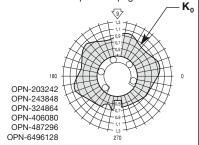
60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type LS	R and LSR	-PD 60 Ca	se* Line	arRac	e* Supp	ort Ra	ils	(Dimen	sion	s in i	nches)
LSR Standard	LSR-PD Standard	Nominal LinearRace	Н	H1	Α	М	Mounti	ng Holes	χ	Υ	LSR
Without Holes	w/PreDrilled Holes	Diameter d	±.002			.,,	N2 Hole	N1 Bolt			Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-10	LSR-10-PD	.625	.687	.41	.45	.31	.19	#8-32	4	2	.49
LSR-12	LSR-12-PD	.750	.750	.42	.51	.38	.22	#10-32	6	3	.59
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01
LSR-20	LSR-20-PD	1.250	1.187	.63	.78	.56	.34	⁵ /16 -18	6	3	1.27
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68
LSR-32	LSR-32-PD	2.000	1.750	.85	1.18	.88	.53	1/2-13	8	4	2.59
LSR-40	LSR-40-PD	2.500	2.250	1.13	1.50	1.13	.69	5%-11	8	4	4.48
LSR-48	LSR-48-PD	3.000	2.750	1.40	1.88	1.38	.81	³ / ₄ -10	8	4	6.98
LSR-64	LSR-64-PD	4.000	3.500	1.75	2.50	1.88	1.06	#1-8	8	4	11.80

Туре	SR/ SR-F	D Linea	arRace	Supp	port	Rails	and A	Assen	nblie	s	(E	Dimensions	in	inc	ches)
SR	SR-PD With	Assy. With	Nom. LinearRace	Н	H1	Α	A1	Е	М	N	3	LinearRace Mounting	Х	Υ	SR
Without Holes	Predrilled Holes	Solid LinearRace	Dia. d	±.002			±.002			Hole	Bolt	Bolt N1			Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-10	SR-10-PD	SRA-10	.625	1.125	.25	1.63	.813	1.13	.31	.19	#8	#8-32 x .88	4	2	.80
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	#10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	.56	.34	5/16	⅓6-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3%-16 x 2.00	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

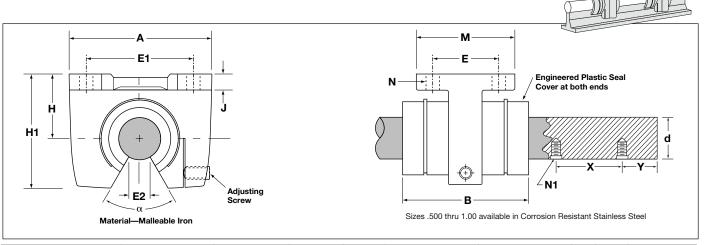

- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below. See page 136 for Stainless Steel bearing derating.
- ⁽²⁾ For the maximum length of all 60 Case LinearRace Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 89. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.


(3)	For	part	number	description	and	specification	s see	page	88	and

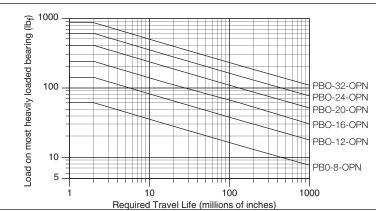

Standard Without Holes	Standard With Predrilled Holes	Assembly With Solid 60 Case LinearRace	Standard Single Piece Length ⁽²⁾ in	Maximum Single Piece Length ⁽²⁾ in
LSR	LSR-PD	_	48	96
SR	SR-PD	SRA	24	72

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page



Precision Steel Ball Bushing Bearing Pillow Block


(Open Type) For Continously Supported Applications

Precision Steel Ball B	ushing* Bearing Pill	low Blocks (Op	en Type, s	eal at bo	th ends) and 60 Ca	se* LinearRace*	(Din	nensio	ns in inches)
Part Num	nber (3)		н	H1	60 Case	60 Case		60	Case
Precision Steel Ball Bushing	60 Case	Nominal			LinearRace Minimum Depth of	Solid LinearRace Mass			arRace ing Holes
Pillow Block	LinearRace	Diameter	±.005		Hardness	lb/in	Х	Υ	N1
PBO-8-OPN	1/2 L CTL	.500	.875	1.50	.04	.06	4	2	#6-32
PBO-12-OPN	3/4 L CTL	.750	1.125	2.00	.06	.13	6	3	#10-32
PBO-16-OPN	1 L CTL	1.000	1.375	2.38	.08	.22	6	3	1/4-20
PBO-20-OPN	1 1/4 L CTL	1.250	1.750	3.06	.08	.35	6	3	⁵ /16-18
PBO-24-OPN	1 1/2 L CTL	1.500	2.000	3.50	.08	.50	8	4	³ / ₈ -16
PBO-32-OPN	2 L CTL	2.000	2.500	4.50	.10	.89	8	4	1/2-13

Part Number (3)		Α	В	E	E1	E2	.I	α	М	N	J		Dynamic ⁽¹⁾
Precision Steel	60 Case LinearRace			_			J	l a	""		•	Pillow Block	Load
Ball Bushing Pillow Block	Diameter d			±.010	±.010	min.		deg		Hole	Bolt	Weight lb	Capacity lb _f
PBO-8-OPN	.4995/.4990	2.00	1.69	1.000	1.500	.37	.25	50	1.50	.19	#8	.4	60
PBO-12-OPN	.7495/.7490	2.75	2.06	1.375	2.000	.43	.31	60	2.00	.22	#10	1.0	140
PBO-16-OPN	.9995/.9990	3.25	2.88	1.500	2.500	.56	.38	60	2.25	.28	1/4	1.8	240
PBO-20-OPN	1.2495/1.2490	4.00	3.63	1.875	3.000	.67	.44	50	2.75	.34	⁵ ⁄16	3.8	400
PBO-24-OPN	1.4994/1.4989	4.75	4.00	2.000	3.500	.81	.50	50	3.00	.34	5/16	4.8	600
PBO-32-OPN	1.9994/1.9987	6.00	5.00	2.500	4.500	1.00	.63	50	3.50	.41	3/8	8.5	860

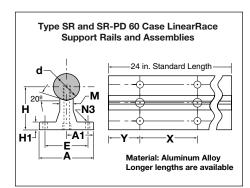
Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing pillow block)

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/K₀.

Where K₀ can be determined from the Polar Graph to the right.


Page 92

Phone: 1-800-554-8466

Website: www.thomsonballbushing.com

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Туре	SR/ SR-F	D Linea	rRace	Supp	oort	Rails	and A	Assen	nblie	s	(D	imensions	in	inc	ches)
SR	SR-PD With	Assy. With	Nom. LinearRace	Н	H1	Α	A1	Ε	М	N	3	LinearRace Mounting	Х	Υ	SR
Without Holes	Predrilled Holes	Solid LinearRace	Dia. d	±.002			±.002			Hole	Bolt	Bolt N1			Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-12	SR-12-PD	SRA-12	.750	1.500	.25	1.75	.875	1.25	.38	.22	#10	10-32 x 1.25	6	3	1.00
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-20	SR-20-PD	SRA-20	1.250	2.125	.31	2.50	1.250	1.88	.56	.34	5/16	5/16-18 x 1.75	6	3	2.10
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3/8-16 x 2.00	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

Standard

With

Predrilled

Holes

SR-PD

Standard

Without

Holes

SR

Assembly

With Solid

60 case

LinearRace

SRA

Standard

Single Piece

Length(2)

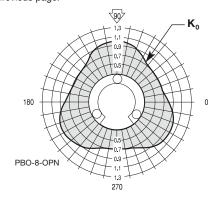
in

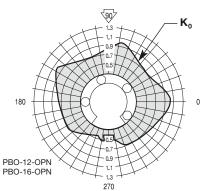
Maximum

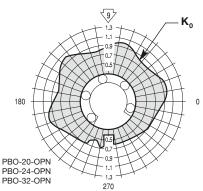
Single Piece

Length(2)

in


72


- (1) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs below.
- For the maximum length of all 60 Case* LinearRace* Support Rail Assemblies without 60 Case LinearRace Joints see maximum length table on page 89. 60 Case LinearRace Support Rail Assemblies are available with 60 Case LinearRace joints for unlimited travel lengths.
- ⁽³⁾ For part number description and specifications see page 88 and 89.


 Note: Precision Steel Ball Bushing* bearings are available in corrosion resistant stainless steel in diameters up to 1 inch. Dynamic load ratings are reduced by 30% when using stainless steel Ball Bushing bearings. See Engineering Support Appendix page 136. For additional technical data, see Engineering Support Appendix.

Polar Graphs

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

Wire Straightening / Feeding Mechanism

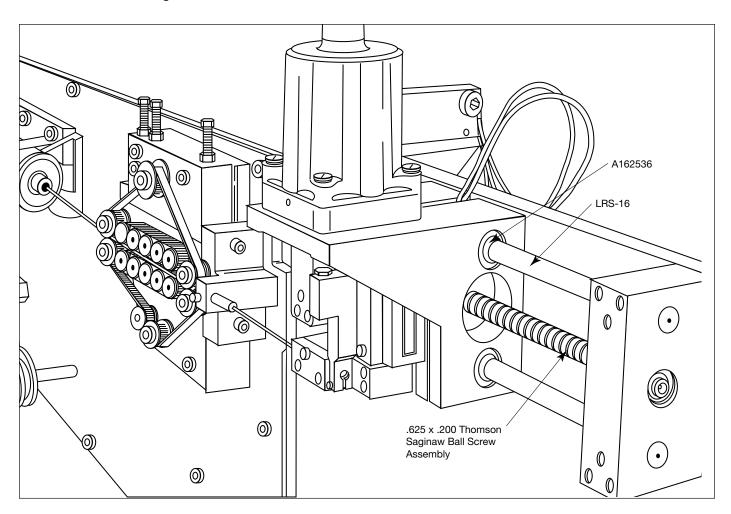
Objective

Redesign a wire straightening/feeding mechanism for a wire drawing machine that improves cycle time and minimizes downtime.

Solution

Combine the performance advantages of the Precision Steel Ball Bushing* bearing with the operating efficiency of Thomson ball screws.

Products Specified


4 - A162536 (Precision Steel Ball Bushing bearings)

2 - 1 S CTL (60 Case* LinearRace*)

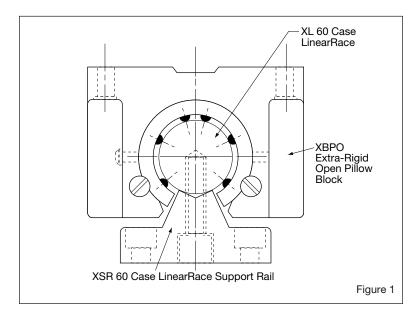
1 - .625 x .200 (Thomson ball screw assembly)

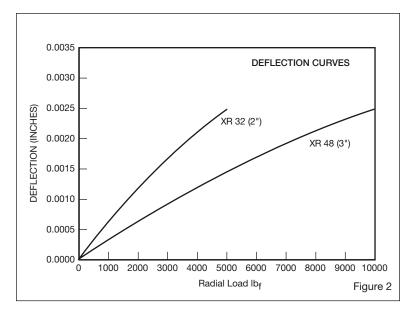
Benefits

By replacing high friction plain bearings with Precision Steel Ball Bushing bearings, service life increased from six months to four years. This significantly reduced downtime and maintenance requirements and provided increased productivity with substantial cost savings.

XR Ball Bushing Bearing Products

XR Ball Bushing* Bearing Products offer:


- five times the load capacity or 125 times the travel life of conventional linear bearings. This dramatic increase in travel life reduces downtime and maximizes productivity.
- three times the rigidity of conventional linear bearings. This increase in stiffness provides immediate improvements in machine positioning accuracy and repeatability.
- the RoundRail* Advantage combined with travel speeds up to 5 ft/s. Derating factors commonly found in linear guide products are eliminated.


- ease of maintenance. When normal maintenance requires bearing replacement, XR Ball Bushing bearings can be quickly and cost-effectively replaced without scrapping the entire system – another shortcoming of some linear guides.
- double acting seals at both ends that keep out contamination and retain lubrication.
- lasting precision alignment by combining the non-wear characteristics of the XR Ball Bushing bearing with a rigid ductile iron pillow block.
- high accelerations and operating speeds without a dramatic increase in the power consumption commonly seen with high friction v-way and flat-way systems.
- available in three sizes from over 1,800 authorized distributors worldwide.

XR Ball Bushing Bearing Products

XR Ball Bushing* bearing products provide five times the load capacity or 125 times the travel life and three times the rigidity of conventional linear bearings. These improvements are centered around four technologically advanced components, the XR Ball Bushing bearing, the XPBO Ball Bushing pillow block, the XL 60 Case* LinearRace* (shaft) and the XSR 60 Case LinearRace support rail.

XR Ball Bushing Bearing

The dramatic increase in load capacity and/or travel life is provided by the XR Ball Bushing bearing's advanced plate design. Each ball conforming bearing plate is precision ground providing smooth and virtually friction free linear movement. The bearing plate length has also been maximized to increase the number of rolling elements in the load carrying zone. The position of each XR bearing plate helps to maximize the load capacity in both pull-off and down loading conditions.

XPBO Ball Bushing Pillow Block

Each XR Ball Bushing bearing can be housed in a rigid ductile iron pillow block (Figure 1). The XPBO pillow block provides the stiffness required in high load applications (Figure 2). Each XPBO is equipped with four mounting holes for easy assembly to the table surface.

XL 60 Case LinearRace

Available factory mounted to XSR 60 Case LinearRace support rail is a hardened and precision ground 60 Case LinearRace (Figure 1). Each 60 Case LinearRace is ground to a surface finish less than 10 Ra microinch and is straight to .001 inch per foot cumulative. Roundness of each 60 Case LinearRace is controlled through proprietary techniques that results in a roundness of 80 millionths of an inch. Each XL 60 Case LinearRace is held to these world class quality standard to assure maximum system performance and travel life.

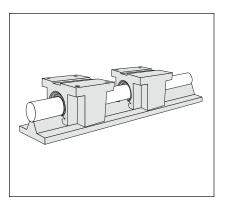
XSR 60 Case LinearRace Support Rails

Rigidity always starts by continuously supporting the 60 Case LinearRace and bearing system (Figure 1). The large ductile iron alloy cross-section of the XSR provides maximum rigidity and stiffness (Figure 2). The increased number of standard 60 Case LinearRace mounting holes add further stiffness and stability to the system.

The RoundRail Advantage

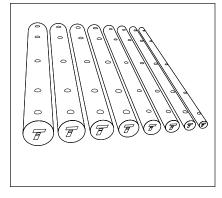
The RoundRail Advantage is the inherent ability of an XR Ball Bushing bearing system to accommodate torsional misalignment (caused by inaccuracies in carriage or base machining or by machine deflection) with little increase in stress to bearing components. Installation time and cost are minimized and system performance is maximized.

Page 96

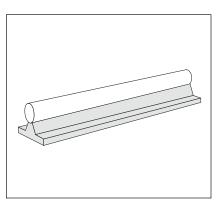

XR Ball Bushing Bearings

XR Ball Bushing Bearing Products

for Continuously Supported Applications


XR Ball Bushing* Bearings Features:

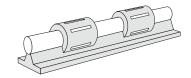
- Available in sizes 2 and 3 inch bore diameter.
- Load capacity range from 4,500 to 10,000 lb_f.
- Pull of load capacity range between 2,100 to 8,000 lb_f.
- Can be mounted in a custom housing.
- Travel speeds up to 5 ft/s.
- System accelerations up to 160 ft/s².

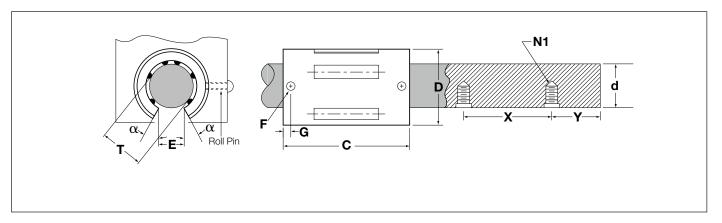

XPBO Ball Bushing Pillow Blocks Features:

- Available in 2 and 3 inch diameter sizes.
- Load capacity range from 4,500 to 10,000 lb_f.
- Pull of load capacity range between 2,100 to 4,500 lb_f.
- Easily secured to table or carriage surface with four mounting bolts.
- Travel speeds up to 5 ft/s.
- System accelerations up to 160 ft/s².
- When used with XL 60 Case* LinearRace* internal clearance is minimized.
- Integral double acting seals at both ends.

XL 60 Case LinearRace Features:

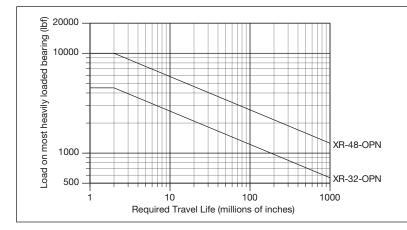
- Case hardness to 60 HRC minimum.
- Surface finish is 8 R_a microinch for 2 and 3 inch diameter and 10 R_a microinch for 4 inch diameter.
- Roundness 80 millionths of an inch.
- Straightness of .0005 inch per foot (.001 TIR) cumulative.
- Available with standard radial drilled and tapped holes.
- Minimum depth of hardness is .100
 inch




XSR 60 Case LinearRace Support Rails Features:

- All ductile iron, heavy duty design and construction.
- Available in 2 and 3 inch diameter sizes.
- Equipped with drilled thru and counterbored base mounting holes.
- Can be pre-assembled with a 60 Case LinearRace for quick and easy installation.
- Precision ground surfaces for 60 Case LinearRace and base mounting.
- Reference edge for ease of installation.

XR Ball Bushing Bearings for Continuously Supported Applications



XR Ball Bushir	ng* Bearings and	60 Cas	e* LinearRace	*			(1	Dime	nsions	in inches)
Part N	lumber	-		60 Case	60 Case LinearRace	60 Case Solid	60 Case Solid		60 C	
XR Ball Bushing	60 Case	Nom	Length	LinearRace Diameter	Minimum	LinearRace	LinearRace Maximum	N		g Holes
Bearing	LinearRace	Nom. Dia.	C	d	Depth of Hardness	Mass lb/in	Length	Х	Υ	N1
XR-32-OPN	2 XL PD(4)	2	4.000/3.970	1.9994/1.9991	.100	.89	168	4	2	1/2-13
XR-48-OPN	3 XL PD(4)	3	6.000/5.940	2.9992/2.9989	.100	2.00	168	6	3	³ / ₄ -10

Part Number		Recommended		Retentio	on Hole(2)					
XR Ball Bushing Bearing	Working ⁽¹⁾ Bore Diameter T	Housing Bore Diameter D	Min. Slot Width E	Dia. F	Loc. G	Angle deg α	Number of Ball Circuits	Ball Dia.	Bearing Mass Ib	Dynamic [®] Load Capacity Ib _f
XR-32-OPN	2.0000/1.9992	3.0000	1.00	.27	.31	27	6	.25	1.3	4500
XR-48-OPN	3.0000/2.9988	4.5000	1.50	.27	.42	30	6	.38	4.4	10000

⁽¹⁾ When installed in a nominal housing bore D, before adjustment. Any deviation from nominal housing bore diameter will change the working bore T, an equal amount. Minimum recommended housing bores are 2.9980 for XR-32-OPN and 4.4975 for XR-48-OPN.

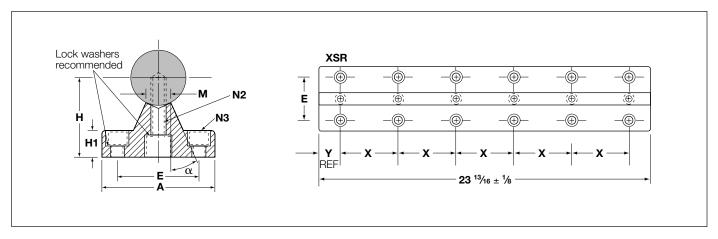
⁽⁴⁾ Contact factory for availability.

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\rm o}$.

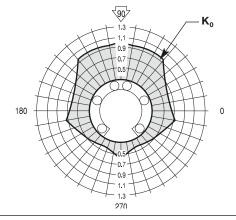
Where K_0 can be determined from the Polar Graph to the right.


Page 98

⁽²⁾ Retention hole does not go through bearing retainer.

⁽³⁾ The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs opposite.

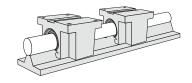
XSR 60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

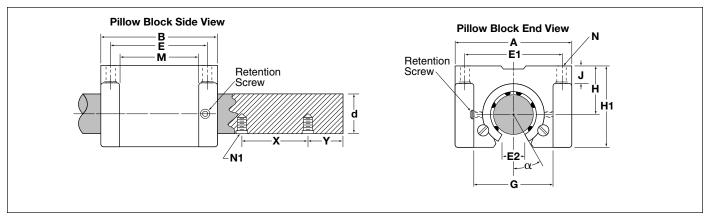

Type XSF	R/XSRA 60 (Case* Linear	Race* Sup	port	Rails	and	Asse	embli	es				(Di	mens	ions	in in	nches)
XSR	Assembly		Н	H1	Α	Е	М		N2		N	2	N3	α	Х	Υ	
With	With	Nominal	. 000											Deg			XSR
Mounting Holes	Solid LinearRace	LinearRace Diameter	+.000 001					Hole	Bolt	Counterbore	Hole	Bolt	Counterbore				Mass lb/ft
110100	-mountage	Biamotoi						110.0	Boile	Countorporo	11010	2011	Countorboro				10/10
XSR-32	XSRA-32	2	2.750	1.00	4.50	3.13	.88	.56	½-13 x 2	1 x .75 DP	.56	.50	1 x .63 DP	15	4	1.97	16
XSR-48	XSRA-48	3	4.000	1.31	6.00	4.25	1.25	.81	3/4-10 x 2.75	1.44 x 1.13 DP	.69	.63	1.25 x .75 DP	25	6	2.97	31

Centerline of 60 Case LinearRace will be parallel to base within .0005 in.

Mounting hole locations are within ±.015, non-cumulative.

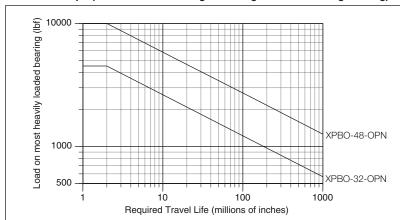
Polar Graph


The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K_0 is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.



XR Ball Bushing Pillow Blocks

for Continuously Supported Applications



XI	R Ball Bushing* Pillo	w Blocks (seal at b	oth ends) and (60 Case* Li	nearRac	e*		(Dime	nsions	s in inches)
	Part Num	ber		н	H1	60 Case LinearRace	60 Case Solid		60 C	
	Extra Rigid Ball Bushing	60 Case	Nominal	+.000		Minimum Depth of	LinearRace Mass	М		g Holes
	Pillow Block	LinearRace	Diameter	001		Hardness	lb/in	Х	Υ	N1
	XPBO-32-OPN	2 XL PD (3)	2	2.375	3.875	.10	.89	4	2	1/2-13
	XPBO-48-OPN	3 XL PD (3)	3	3.500	5.875	.10	2.00	6	3	³ / ₄ -10

Part Number Extra Rigid	Working Bore	60 Case LinearRace	Ball Bushing ⁽¹⁾ Bearing/	А	В	Е	E1	E2	G	J	α Deg	M	N	1	Pillow Block	Dynamic ⁽²⁾ Load
Ball Bushing Pillow Block	Diameter T	Diameter d	LinearRace Fit Up			±.010	±.010	min.			Deg		Hole	Bolt	Mass lb	Capacity lb _f
XPBO-32-OPN	1.9985/1.9972	1.9994/1.9991	.0022P/.006P	6.00	4.88	3.750	5.000	1.00	3.75	.88	27	2.63	.53	1/2	18	4500
XPBO-48-OPN	2.9980/2.9963	2.9992/2.9989	.0029P/.0009P	8.38	7.25	5.875	7.000	1.50	5.50	1.25	30	4.13	.66	5/8	55	10000

⁽¹⁾ XPBO pillow blocks are designed to give extra rigid support and are therefore dimensioned to provide the interference fits when used with 60 Case LinearRace class XL. If used with class L 60 Case LinearRace the fit-up values would be .0022P/.0002P for the 2 inch size and .0029P/.0003P for the 3 inch size.

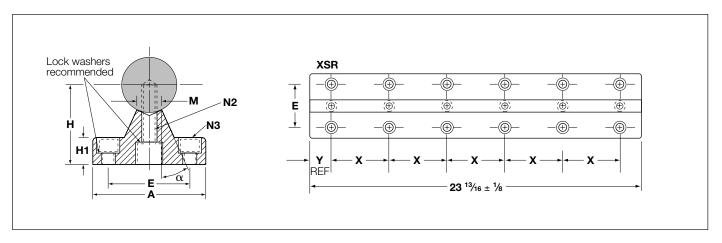
Load/Life Graph (Lines indicate limiting load for given Ball Bushing bearing)

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart. Load on most heavily loaded bearing = maximum applied load/ $K_{\mbox{\tiny 0}}$.

Where $\ensuremath{K_{\scriptscriptstyle{0}}}$ can be determined from the Polar Graph to the right.


Page 100

The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For dynamic load correction factors see polar graphs opposite.

⁽³⁾ Contact factory for availability.

XSR 60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

Type XSF	R/XSRA 60 (Case* Linear	Race* Sup	port	Rails	and	Asse	mbli	es				(Di	mens	ions	in ir	ches)
XSR With Mounting	Assembly With Solid	Nominal LinearRace	H +.000	H1	Α	Ε	М		N2			I	N3	α Deg	Х	Υ	XSR Mass
Holes	LinearRace	Diameter	001					Hole	Bolt	Counterbore	Hole	Bolt	Counterbore				lb/ft
XSR-32	XSRA-32	2	2.750	1.00	4.50	3.13	.88	.56	½-13 x 2	1 x .75 DP	.56	.50	1 x .63 DP	15	4	1.97	16
XSR-48	XSRA-48	3	4.000	1.31	6.00	4.25	1.25	.81	3/4-10 x 2.75	1.44 x 1.13 DP	.69	.63	1.25 x .75 DP	25	6	2.97	31

Centerline of 60 Case LinearRace will be parallel to base within .0005 in.

XBPO Material: Ductile Iron.

Polar Graph

The actual Dynamic Load Capacity of a Ball Bushing bearing is determined by the orientation of the bearing or direction of the applied load. The load Correction Factor K₀ is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual Dynamic Load Capacity, multiply the proper correction factor by the Dynamic Load Capacity listed in the product table on the previous page.

180

X-Y-Z System

Objective

Build a rigid X-Y-Z System designed to perform welding and flame cutting tasks.

Solution

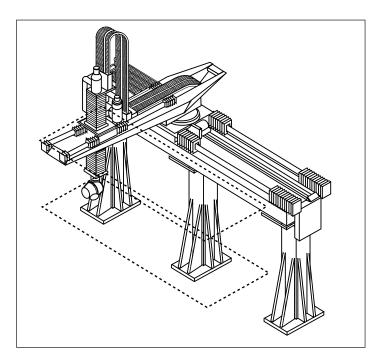
Extra Rigid Ball Bushing bearings will be used on the X-axis to minimize deflection of the cantilevered Y-axis. Self-aligning Super Smart Ball Bushing* bearings are used on the Y and Z axis to simplify the assembly.

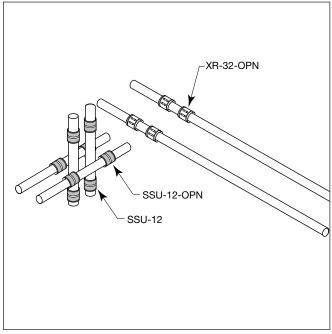
Products Specified

X-axis

- 4 XR-32-OPN (XR Ball Bushing bearing)
- 2 XSRA-32 x 108 in (60 Case* LinearRace* Support Rail Assembly)

Y-axis


- 4 SSU-12-OPN (Super Smart Ball Bushing bearing [Open Type])
- 2 LSR-12-PD x 48 in (Low Profile 60 Case LinearRace Support Rail)
- 2 3/4 L PD CTL x 48 in (60 Case LinearRace)


Z-axis

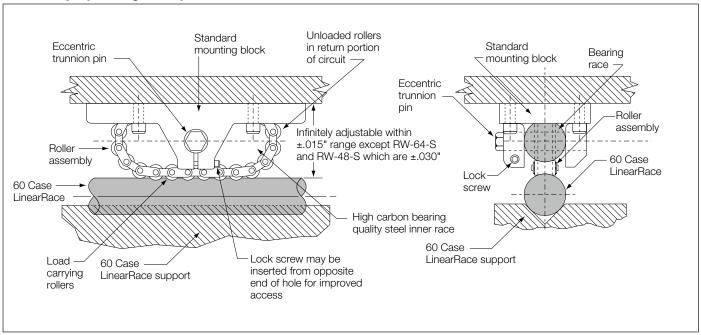
- 4 SSU-12 (Super Smart Ball Bushing bearing)
- 2 3/4 L CTL x 36 in (60 Case LinearRace)

Benefits

The high load capacity, rigidity and RoundRail* Advantage of the Super Smart and XR Ball Bushing bearings provided an easy to assemble system with a repeatability of ±.005 in.

RoundWay Linear Roller Bearings

Thomson RoundWay* Linear Roller Bearings offer:


- up to twenty times the load capacity of conventional linear ball bearings. This dramatic increase allows for more compact machine designs with a reduction in hardware costs.
- a rigid design that provides high accuracy while tolerating the high shock loads common to machine tool applications.
- a coefficient of friction as low as .005.
 When replacing v-ways or flat-ways,
 RoundWay linear roller bearings allow for the use of smaller less expensive drives, motors, belts, gears and ball screws.
- a self-aligning capability that reduces installation time and cost.
- an eccentric trunnion pin that adjusts bearing height to compensate for minor inaccuracies in mounting base flatness or machining accuracy. Installation is quicker and easier than old style, conventional way systems.

- availability of an integral wiper that protects against contamination while retaining lubrication.
- interchangeable components for quick, cost-effective machine maintenance. There is no need to scrap the entire way system, a problem with some linear guide products.
- the RoundRail* Advantage combined with the self aligning feature, eliminates the need for derating factors commonly seen with linear guides.
- availability from over 1800 distributors worldwide.

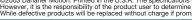
RoundWay Linear Roller Bearings

RoundWay Operating Principle

Thomson invented the RoundWay* Linear roller bearing for use in high load, heavy duty applications. Each RoundWay bearing combines the high load capacity of hardened and ground steel recirculating rollers with a rigid malleable iron pillow block providing extremely high load capacity with smooth linear travel. The RoundWay linear roller bearing comes in both a single and dual version. A single RoundWay linear roller bearing does not resist side loads and is therefore always used in conjunction with a dual version, unless used in a configuration as shown in Figures 2, 3 and 4 on page 105.

Each RoundWay linear roller bearing is designed for use on 60 Case LinearRace. The 60 Case* LinearRace* shaft an be continuously supported using type LSR, SR, FLSR or XSR 60 Case LinearRace support rails or intermittently supported using the adjustable Waymount* LinearRace supports type WM.

The RoundWay linear roller bearing consists of four basic parts: the bearing race, the roller assembly, the eccentric trunnion pin and the mounting block. The rolling elements of a RoundWay linear roller bearing are a series of concave rollers interconnected and linked by a chain assembly. As load is applied to the

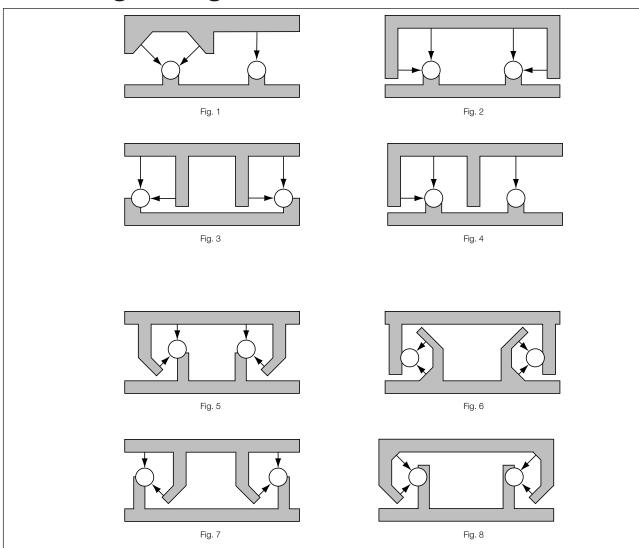

Page 104

mounting block it is transferred through the bearing race and roller assembly to the supported 60 Case LinearRace. Connecting the mounting block to the RoundWav

bearing and roller assembly is an eccentric trunnion pin that allows the height of the RoundWay linear roller bearing to be adjusted to compensate for variations in the mounting surfaces or the build-up of tolerances between component elements. The eccentric trunnion pin can also be used to preload the RoundWay bearing by eliminating internal bearing clearance. After the eccentric trunnion pin has been adjusted it can be held in place by simply tightening the lock screw.

Self-Aligning

The RoundWay single and dual bearings are designed with a built-in self-aligning capability that absorbs misalignment caused by inaccuracies in carriage or base machining. The RoundWay single bearing has an additional built-in self-aligning capability that allows it to absorb misalignment caused by two slightly out of parallel 60 Case LinearRace ways. This feature is realized when two RoundWay single bearings are mounted on one 60 Case LinearRace and two dual RoundWay bearings are on a parallel 60 Case LinearRace (Figure 1 on page 105).



Website: www.thomsonballbushing.com

Roundway

RoundWay Linear Roller Bearing Mounting Configurations

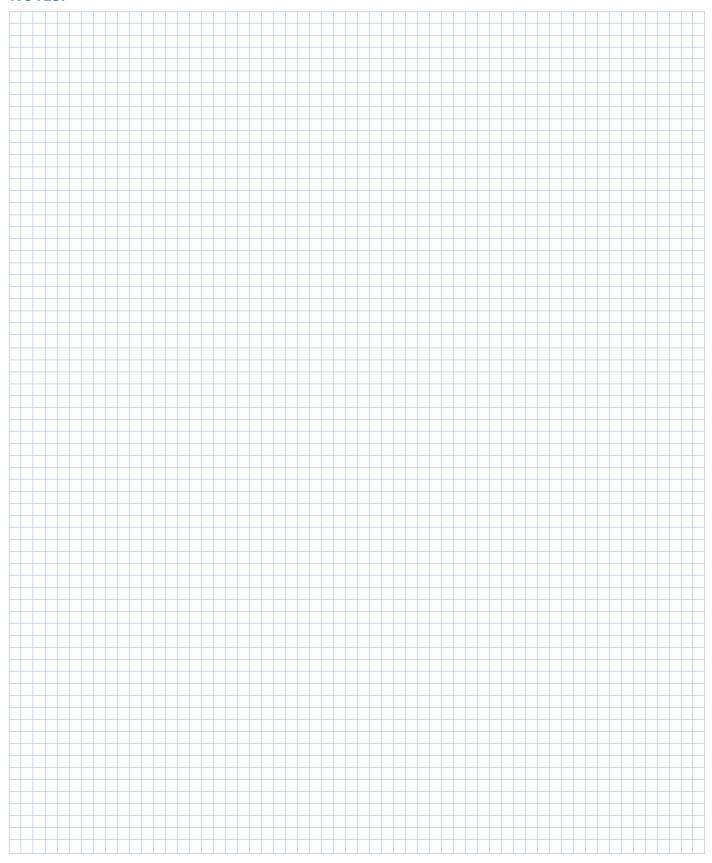
IMPORTANT!

A single RoundWay bearing does not resist side loads. Therefore, dual RoundWay bearings or the equivalent are always used in combination with single units.

RoundWay* Bearing Mounting Arrangements

RoundWay bearings are available in single mounting blocks or dual V-blocks. The basic race and roller assembly can be purchased separately, along with the suitable type of trunnion pin for mounting directly in the carriage or other machine elements (see page 110). When using either type of cantilever mounting trunnion pin, deflection may be experienced under heavy loads.

The above illustrations are a few schematic suggestions for arrangements of RoundWay bearings and 60 Case* LinearRace* ways. The load directions of the bearings are indicated by arrows.


The first group (Figs. 1 through 4) depends on gravity to hold the carriage on the ways.

The second group shows arrangements which will carry loads in any direction. The first two figures (Figs. 5 and 6) are similar to the second two figures (Figs. 7 and 8), except for reverse orientation of horizontal load-carrying bearings.

All schematics on this page can be pre-loaded except Fig. 1. In the Fig. 1 arrangement, the maximum side load permitted is 50% of the applied vertical load on the Dual RoundWay bearing.

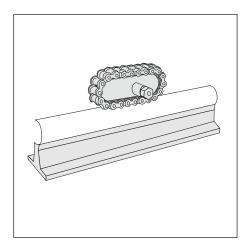
NOTES:

Page 106

Roundway

RoundWay Linear Roller Bearings

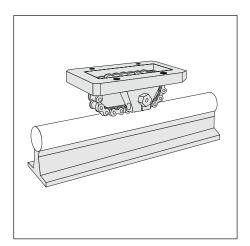
Table of Contents


RoundWay Linear Roller bearings have been designed to carry heavy loads in either a continuous or intermittent supported application, where rigidity and stiffness is required. RoundWay Linear Roller bearings are also the proper choice for high speed applications or highly contaminated environments. RoundWay Linear Roller Bearings are available in a variety of configurations and sizes. For a complete overview of each RoundWay type, simply turn to page 108. For specifications see the corresponding pages referenced below.

Product Overview	108
Specifications	
RoundWay Linear Roller bearing Type A,B,C	110
RoundWay Linear Roller bearing Single Type	112
RoundWay Linear Roller bearing Dual Type	114

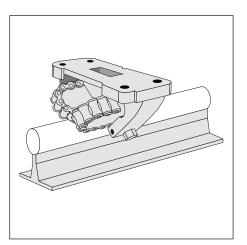
Phone: 1-800-554-8466

Website: www.thomsonballbushing.com


RoundWay Linear Roller Bearings for Continuously Supported Applications

RoundWay* Linear Roller Bearing Type (Type A,B,C)

- Available in ½ through 3 inch diameters.
- Load capacity range between 970 and 24,000 lb_f.
- Travel speeds up to 100 ft/s.
- Accelerations up to 450 ft/s².
- Can be adjusted to compensate for variations in the mounting surface.
- Self-aligning in all directions.
- Designed to compensate for two 60 Case LinearRace ways that are slightly out of parallel

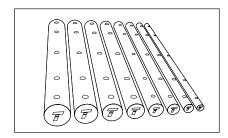

- Can be mounted in a custom housing.
- Available with a two piece seal that retains lubrication while protecting the bearing from the ingress of dirt or contaminants.

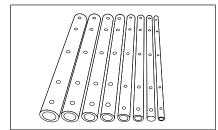
RoundWay Linear Roller Bearing (Single Type)

- Available in ½ through 3 inch diameters.
- Load capacity range between 970 and 24,000 lb_f.
- Travel speeds up to 100 ft/s.
- Accelerations up to 450 ft/s².
- Can be adjusted to compensate for variations in the mounting surface.
- Self-aligning in all directions.
- Designed to compensate for two 60 Case LinearRace ways that are slightly out of parallel

- Should always be used in conjunction with RoundWay Dual version.
- Can be mounted in a custom housing.
- Available with a two piece seal that retains lubrication while protecting the bearing from the ingress of dirt or contaminants.
- Easily mounted to carriage with four mounting bolts.

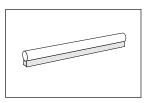
RoundWay Linear Roller Bearing (Dual Type)


- Available in ½ through 3 inch diameters.
- Load capacity range between 1370 and 35,000 lbf.
- Travel speeds up to 100 ft/s.
- Accelerations up to 450 ft/s2.
- Can be adjusted to compensate for variations in the mounting surface.
- Self-aligning in all directions.
- Available with a two piece seal that retains lubrication while protecting the bearing from the ingress of dirt or contaminants.
- Easily mounted to carriage with four mounting bolts.

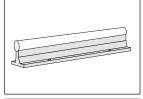

60 Case LinearRace (PreDrilled)

for Continuously Supported Applications

60 Case* Solid LinearRace* with Mounting Holes Features:


- Radial drilled and tapped holes ready for immediate use with standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between ½ and 4 inch.
- Surface finish 12 R_a microinch.
- Hardness 60 HRC minimum.
- · Roundness 80 millionths of an inch.
- Available in corrosion resistant 440C stainless steel (50 HRC minimum).
- Available with Preplate* chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

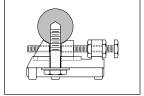
60 Case Tubular Lite* LinearRace with Mounting Holes Features:


- Hollow design reduces weight and inertia.
- Radial drilled and tapped holes ready for immediate use.
- Standard hole spacing to match standard 60 Case LinearRace support rails.
- Diameter range between 1½ and 4 inch.
- Roundness 80 millionths of an inch.
- Case hardness 58 HRC minimum.
- Surface finish 12 R_a microinch.
- Available with Preplate chrome option.
- Standard straightness .001 inch per foot cumulative (.002 TIR) with special straightness at .0005 inch per foot cumulative (.001 TIR) available.

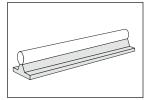
60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications

LSR Low Profile 60 Case LinearRace Support Rail Features:

- Diameter range between ½ and 4 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for custom hole spacing.
- Low Profile design.
- Unlimited travel lengths.


SR/SRA 60 Case LinearRace Support Rail Assembly Features:

- Diameter range between ½ and 2 inch.
- Available with standard mounting holes for immediate use.
- Available without mounting holes for customized hole spacings.
- Available as a pre-engineered, ready to install assembly.
- Light weight, high strength aluminum alloy rail.
- Unlimited travel lengths.


LSRA SmartRail* Assembly Features:

- Diameter range between 5/8 and 11/2 inch.
- Bolt-down-from-the-top mounting.
- Two mounting hole patterns.
- Single piece lengths up to 15 feet long.
- Low profile design.

Waymount* 60 Case LinearRace Support Block Features:

- Available for 60 Case LinearRace diameters ½ through 4 inch.
- Can easily adjust vertical or horizontal position of 60 Case LinearRace.
- Easily secured to base surface.
- Protected with a corrosion resistant coating.
- Designed specifically for use with RoundWay Linear Roller bearings.
- Installation time and cost is minimized.

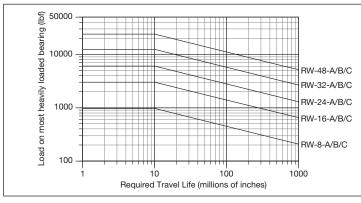

XSR/XSRA 60 Case LinearRace Support Rail and Assembly Features:

- All ductile iron, heavy duty design and construction.
- Equipped with drill thru and counterbored base mounting holes.
- Reference edge for ease of installation.
- Can be pre-assembled with 60 Case LinearRace for quick and easy installation.
- Precision ground surfaces for 60 Case LinearRace and base mounting.
- Available in 2 and 3 inch diameter.

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement

RoundWay Linear Roller Bearing Type A, B and C

RoundWa	ay* Linear F	Roller Bear	ing (Type A	B and C) and 60	Case	* Line	arRac	e*				(Di	mensions i	n inches)
	Part Number Bearing Bearing 60 Cas				Α	В	С	D	Е	F	α	60 Case LinearRace	60 Case LinearRace	60 Case Solid LinearRace	Dynamic ⁽¹⁾ Load
Bearing Type A	Bearing Type B	Bearing Type C	60 Case LinearRace	Nom. Dia.	+.0005 0000				±.001		Deg	Diameter d	Maximum Length	Mass lb/in	Cap. Ib _f
RW-8-A	RW-8-B	RW-8-C	1/2 L PD	.500	.2500	.45	.63	2.38	.502	.56	50	.4995/.4990	168	.06	970
RW-16-A	RW-16-B	RW-16-C	1 L PD	1.000	.4688	.80	1.00	3.75	1.002	.94	50	.9995/.9990	180	.22	3020
RW-24-A	RW-24-B	RW-24-C	1 1/2 L PD	1.500	.7188	1.15	1.50	5.38	1.502	1.38	55	1.4994/1.4989	204	.50	6020
RW-32-A	RW-32-B	RW-32-C	2 L PD	2.000	.9688	1.50	2.00	7.38	2.002	1.75	55	1.9994/1.9987	204	.89	12360
RW-48-A	RW-48-B	RW-48-C	3 L PD ⁽²⁾	3.000	1.5626	2.30	3.00	11.00	3.002	2.75	50	2.9992/2.9983	204	2.00	24000


Trunnic	n Type	A				
RoundWay Bearing Part Number	+.0000 0005	Н	J	+.0000 0005	L	Bearing Mass Ib
RW-8-A	.2187	.19	.31	.2812	1.13	.30
RW-16-A	.4375	.25	.50	.5000	2.00	1.10
RW-24-A	.6875	.31	.63	.7500	2.75	3.10
RW-32-A	.9375	.38	.75	1.0000	3.50	7.3
RW-48-A	1.5000	.59	1.25	1.6250	5.53	24.0

Trunnic	on Iy	/pe B				
RoundWay Bearing Part Number	G	H	J	+.000 001	L	Bearing Mass Ib
RW-8-B	.75	.31	.13	.3105	1.63	.30
RW-16-B	1.25	.59	.19	.498	2.78	1.10
RW-24-B	1.75	.88	.25	.748	3.94	3.10
RW-32-B	2.25	1.13	.31	.998	5.06	7.70
RW-48-B	3.50	1.75	.50	1.623	8.00	24.80

Trunni	on Typ	e C							
RoundWay Bearing Part Number	G ⁽²⁾ +.060 000	Н	J	+.000 001	L	М	N	P Std. Hex across Flats	Bearing Mass Ib
RW-8-C	.719	.31	.13	.311	1.69	.22	.44	-	.30
RW-16-C	1.188	.59	.19	.498	2.88	.31	.75	-	1.10
RW-24-C	1.656	.88	.25	.748	4.13	.50	1.00	-	3.20
RW-32-C	2.094	1.13	.31	.998	5.25	.63	1.31	-	7.90
RW-48-C	3.063	1.75	.50	1.623	7.25	1.00	-	2.25	25.60

⁽¹⁾ Dynamic Load Capacity is based on 10 million inches of travel.

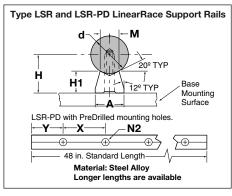
Load/Life Graph (Lines indicate limiting load for given RoundWay bearing)

Determining RoundWay Bearing Size

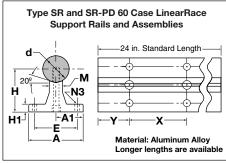
The primary factors that influence the choice of bearing size are maximum load on a single RoundWay bearing and the required travel life. To determine the proper RoundWay bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All RoundWay bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Page 110

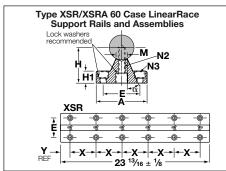
©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

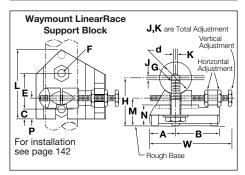


 $[\]ensuremath{^{\mbox{\tiny (2)}}}\mbox{Thickness of mounting member.}$


Phone: 1-800-554-8466

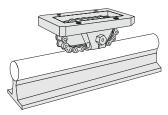
Website: www.thomsonballbushing.com

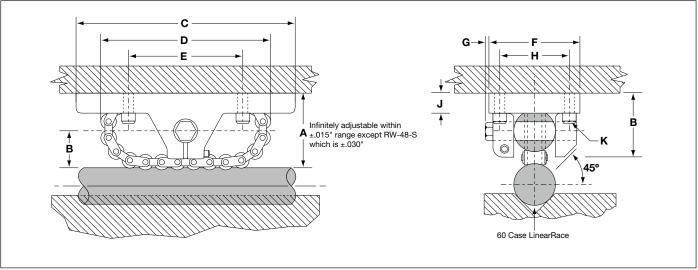

60 Case LinearRace Support Rails and Assemblies for Continuously Supported Applications


Type LS	R and LSR	-PD 60 Ca	se* Line	arRac	e* Supp	ort Ra	ils	(Dimen	sion	s in i	nches)
LSR Standard	LSR-PD Standard	Nominal LinearRace	Н	H1	Α	М	1	N2	X	γ	LSR
Without Holes	w/PreDrilled Holes	Diameter d	±.002		,,		Hole	Bolt		ľ	Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68
LSR-32	LSR-32-PD	2.000	1.750	.85	1.18	.88	.53	1/2-13	8	4	2.59
LSR-48	LSR-48-PD	3.000	2.750	1.40	1.88	1.38	.81	3/4-10	8	4	6.98

Type	SR/ SR-	PD Line	arRace	Sup	port	Rails	and A	Assen	nblie	s	(D	imensions	in	inc	ches)
SR Without	SR-PD With PreDrilled	Assy. With Solid	Nom. LinearRace Dia.	Н	H1	Α	A1	Ε	М	N	3	LinearRace Mounting Bolt	Χ	Υ	SR Mass
Holes	Holes	LinearRace	d	±.002			±.002			Hole	Bolt	N1			lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	5/16	3%-16 x 2.00	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

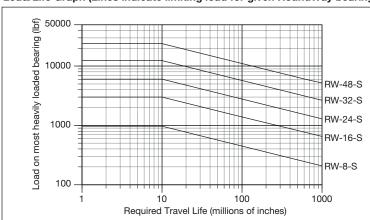
Туре	XSR/X	SRA Li	near	Rac	e S	upp	ort	Rail	s and A	ssemblie	S	(Dimensi	ons	in	inc	hes)
XSR With Mounting	Assy. With Solid	Nominal LinearRace	H 001	H1	A	Ε	М		N2			N	13	α	X	Υ	XSR Mass
Holes	LinearRace	Diameter	+.000					Hole	Bolt	Counterbore	Hole	Bolt	Counterbore	deg			lb/ft
XSR-32	XSRA-32	2.000	2.750	1.00	4.50	3.13	.88	.56	½-13 x 2	1 x .75 DP	.56	.50	1 x .63 DP	15	4	1.97	16
XSR-48	XSRA-48	3.000	4.000	1.31	6.00	4.25	1.25	.81	³ / ₄ -10 x 2.75	1.44 x 1.13 DP	.69	.63	1.25 x .75 DP	25	6	2.97	31




Waymou	unt Linear	Race	e Sup	port	Bloc	k						(Di	men	sions	in in	ches)
Waymount Part Number	Nominal LinearRace Diameter d	L	Н	W	A	В	С	E	F	G ⁽⁴⁾	J	K	М	N	Р	Mass lb
WM-8	.500	1.50	1.06	1.75	.50	.88	.25	.75	.22	#8-32	.05	.09	.69	.50	.44	.20
WM-16	1.000	2.00	1.50	2.50	.75	1.25	.31	1.06	.28	1/4-28	.06	.13	.81	.69	.69	.50
WM-24	1.500	2.50	2.00	3.50	1.19	1.63	.44	1.19	.34	5/16-24	.13	.13	1.00	.75	.75	1.10
WM-32	2.000	3.00	2.50	4.00	1.44	1.88	.50	1.38	.41	3%-24	.13	.13	1.25	.94	1.00	1.80
WM-48	3.000	5.00	4.31	6.75	2.38	3.38	.75	2.63	.66	⁵ %-18	.13	.13	2.25	1.63	1.50	10.20

⁽⁴⁾ Supplied with Waymount LinearRace support block

RoundWay Linear Roller Bearing (Single Type)



RoundWa	ay* Linear I	Roller I	3earii	ng (Si	ngle	Type)	and	60 Ca	ase*	Linea	arRac	ce*					(Dimer	sions in	inches)
Part N	lumber			1	•	,	_	_		l			,	l			60 Case		
			Α	В	С	D	E	F	G	H	J		K	L	60 Case LinearRace	60 Case LinearRace	Solid LinearRace	Bearing	Dynamic ⁽¹⁾ Load
RoundWay Bearing	60 Case LinearRace	Nom. Dia.										Bolt	Hole		Diameter d	Maximum Length	Mass Ib/in	Mass lb	Capacity lb _f
										<u> </u>		-							
RW-8-S	1/2 L PD	.500	1.00	.45	3.0	2.38	1.50	1.25	.19	.94	.31	#6	.16	.88	.4995/.4990	168	.06	.50	970
RW-16-S	1 L PD	1.000	1.75	.80	5.0	3.75	2.50	2.13	.25	1.63	.50	#10	.25	1.50	.9995/.9990	180	.22	2.20	3020
RW-24-S	1 1/2 L PD	1.500	2.50	1.15	6.5	5.38	3.50	2.88	.31	2.13	.63	.31	.38	2.13	1.4994/1.4989	204	.50	5.60	6020
RW-32-S	2 L PD	2.000	3.25	1.50	8.5	7.38	4.50	3.63	.38	2.75	.75	.38	.44	2.88	1.9994/1.9987	204	.89	12.40	12360
RW-48-S	3 L PD	3.000	5.00	2.30	13.0	11.00	7.00	6.00	.50	4.25	1.25	.63	.69	4.25	2.9992/2.9983	204	2.00	48.00	24000

⁽¹⁾ Dynamic Load Capacity is based on 10 million inches of travel.

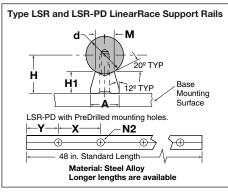
Load/Life Graph (Lines indicate limiting load for given RoundWay bearing)

Determining RoundWay Bearing Size

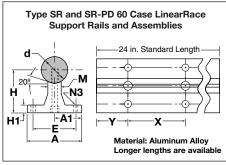
The primary factors that influence the choice of bearing size are maximum load on a single RoundWay bearing and required travel life. To determine the proper RoundWay bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All RoundWay bearing sizes that pass through or above and to the right of this point may be suitable for this

Page 112

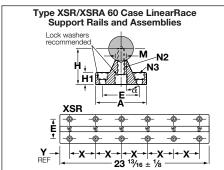
©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assured beyond such replacement.

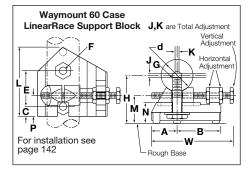


⁽²⁾ Contact factory for availability


Phone: 1-800-554-8466

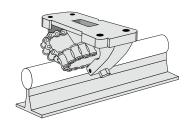
Website: www.thomsonballbushing.com

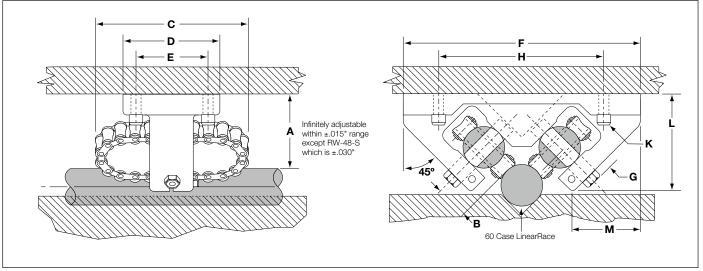

60 Case* LinearRace* Support Rails and Assemblies for Continuously Supported Applications


Type LS	R and LSR	-PD Linear	Race S	upport	Rails			(Dimen	sion	s in i	inches)
LSR Standard	LSR-PD Standard	Nominal LinearRace	Н	H1	Α	М	1	N2	х	γ	LSR
Without Holes	w/PreDrilled Holes	Diameter d	±.002		Hole		Hole	Bolt		•	Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³%-16	8	4	1.68
LSR-32	LSR-32-PD	2.000	1.750	.85	1.18	.88	.53	1/2-13	8	4	2.59
LSR-48	LSR-48-PD	3.000	2.750	1.40	1.88	1.38	.81	3/4-10	8	4	6.98

Туре	Type SR/ SR-PD LinearRace Support Rails and Assemblies (Dimensions in inches)														
SR Without	SR-PD With PreDrilled	Assy. With Solid	Nom. LinearRace Dia.	Н	H1	Α	A1	Е	М	N	3	LinearRace Mounting Bolt	Х	Υ	SR Mass
Holes	Holes	LinearRace		±.002			±.002			Hole	Bolt	N1			lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	⁵ / ₁₆	3%-16 x 2.50	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

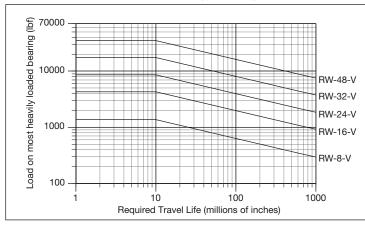
Туре	XSR/X	SRA Li	near	Rac	e S	upp	ort	Rail	s and A	ssemblie	s	(Dimensi	ons	in	inc	hes)
XSR With Mounting	Assy. With Solid	Nominal LinearRace	H 001	H1	Α	Ε	M		N2		N	2	N3	α	χ	Υ	XSR Mass
Holes	LinearRace	Diameter	+.000					Hole	Bolt	Counterbore	Hole	Bolt	Counterbore	deg			lb/ft
XSR-32	XSRA-32	2.000	2.750	1.00	4.50	3.13	.88	.56	½-13 x 2	1 x .75 DP	.56	.50	1 x .63 DP	15	4	1.97	16
XSR-48	XSRA-48	3.000	4.000	1.31	6.00	4.25	1.25	.81	³ / ₄ -10 x 2.75	1.44 x 1.13 DP	.69	.63	1.25 x .75 DP	25	6	2.97	31




Waymou	unt Linear	Race	e Sup	port	Bloc	k						(Di	men	sions	in in	ches)
Waymount Part Number	Nominal LinearRace Diameter d	L	Н	W	A	В	С	E	F	G ⁽⁴⁾	J	K	M	N	Р	Mass lb
WM-8	.500	1.50	1.06	1.75	.50	.88	.25	.75	.22	#8-32	.05	.09	.69	.50	.44	.20
WM-16	1.000	2.00	1.50	2.50	.75	1.25	.31	1.06	.28	1/4-28	.06	.13	.81	.69	.69	.50
WM-24	1.500	2.50	2.00	3.50	1.19	1.63	.44	1.19	.34	5/16-24	.13	.13	1.00	.75	.75	1.10
WM-32	2.000	3.00	2.50	4.00	1.44	1.88	.50	1.38	.41	3%-24	.13	.13	1.25	.94	1.00	1.80
WM-48	3.000	5.00	4.31	6.75	2.38	3.38	.75	2.63	.66	⁵ %-18	.13	.13	2.25	1.63	1.50	10.20

⁽⁴⁾ Supplied with Waymount LinearRace support block

RoundWay Linear Roller Bearing (Dual Type)



RoundV	Vay* Linear	Rolle	r Bea	aring	s (Dua	al Typ	e) ar	nd 60	Cas	e* Lin	earR	ace*						(Dimensio	ns in in	ches)
Part I	Number		Α	В	O	D	Е	F	G	Н	J	1	K	L	М	60 Case LinearRace	60 Case LinearRace	60 Case Solid LinearRace	Bearing	Dyn. ⁽¹⁾ Load
RoundWay Bearing	60 Case LinearRace	Nom. Dia.										Bolt	Hole			Diameter d	Maximum Length	Mass lb/in	Mass lb	Cap. Ib _f
RW-8-V	1/2 L PD	.500	1.00	.45	2.38	1.38	1.00	3.00	.19	2.25	.31	#8	.19	1.38	.69	.4995/.4990	168	.06	1.10	1370
RW-16-V	1 L PD	1.000	1.75	.80	3.75	2.25	1.63	5.75	.25	4.0	.50	#10	.25	2.38	1.56	.9995/.9990	180	.22	4.90	4300
RW-24-V	1 1/2 L PD	1.500	2.50	1.15	5.38	2.75	2.00	7.88	.31	6.0	.63	.31	.38	3.38	2.13	1.4994/1.4989	204	.50	11.70	8600
RW-32-V	2 L PD	2.000	3.25	1.50	7.38	3.50	2.50	9.75	.38	7.5	.75	.38	.44	4.38	2.50	1.9994/1.9987	204	.89	25.20	17500
RW-48-V	3 L PD	3.000	5.00	2.30	11.00	5.50	4.00	15.50	.63	12.0	1.25	.63	.69	7.00	4.25	2.9992/2.9983	204	2.00	90	35000

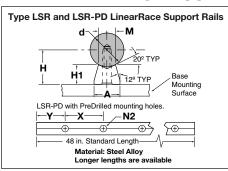
⁽¹⁾ Dynamic Load Capacity is based on 10 million inches of travel.

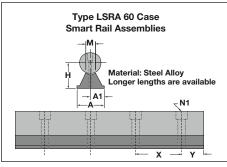
Load/Life Graph (Lines indicate limiting load for given RoundWay bearing)

Determining RoundWay Bearing Size

The primary factors that influence the choice of bearing size are maximum load on a RoundWay bearing and the required travel life. To determine the proper RoundWay bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All RoundWay bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Page 114

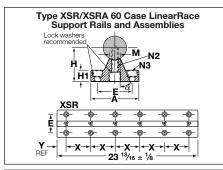

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assured beyond such replacement.


Website: www.thomsonballbushing.com

Roundway

60 Case* LinearRace* Support Rails and Assemblies for Continuously Supported Applications

Type LS	SR and LSR	-PD Linea	Race S	upport	Rails			(Dimen	sion	s in i	nches)
LSR Standard	LSR-PD Standard	Nominal LinearRace	Н	H1	Α	М	ľ	N2	Х	γ	LSR
Without Holes	w/PreDrilled Holes	Diameter d	±.002		,,		Hole	Bolt		ľ	Mass lb/ft
LSR-8	LSR-8-PD	.500	.562	.34	.37	.25	.17	#6-32	4	2	.32
LSR-16	LSR-16-PD	1.000	1.000	.56	.69	.50	.28	1/4-20	6	3	1.01
LSR-24	LSR-24-PD	1.500	1.375	.70	.93	.69	.41	³ %-16	8	4	1.68
LSR-32	LSR-32-PD	2.000	1.750	.85	1.18	.88	.53	1/2-13	8	4	2.59
LSR-48	LSR-48-PD	3.000	2.750	1.40	1.88	1.38	.81	³ ⁄ ₄ -10	8	4	6.98



Type LSRA S	Smart Rail* As	semblies				(Dir	nensio	ns in in	ches)
Part Number ⁽³⁾			Н	Α	A1	Υ	Мо	unting H	oles
Smart Rail Assembly ⁽¹⁾	Smart Rail Assembly ⁽²⁾	LinearRace Diameter	+/-0.002			Std.	X1	X2 ⁽⁴⁾	N1
LSRA10	LSRA10 CR	0.625	0.687	0.45	0.225	1.0	2	3	#5
LSRA12	LSRA12 CR	0.750	0.750	0.51	0.255	1.5	3	4	#6
LSRA16	LSRA16 CR	1.000	1.000	0.69	0.345	1.5	3	4	#10
LSRA20	LSRA20 CR	1.250	1.187	0.78	0.390	1.5	3	6	5/16
LSRA24	LSRA24 CR	1.500	1.375	0.93	0.465	2.0	4	8	3/8

(1) = Consists of steel rail and high carbon steel LinearRace (HRC 60–65). (2) = Consists of zinc plated steel rail and 440C St. St'l. LinearRace (HRC 50–55). (3) = Specify length of assembly and mounting hole spacing (X1 or X2) when ordering. For example, LSRA12 CR X1 x 24.00 inches. (4) = Made to order.

	R-PD 60 Case LinearRace Rails and Assemblies
d M N3 H1 E A	24 in. Standard Length

Туре	SR/ SR-	PD Line	arRace	Sup	port	Rails	and A	Assen	nblie	s	(D	imensions	in	inc	ches)
SR Without Holes	SR-PD With PreDrilled Holes	Assy. With Solid LinearRace	Nom. LinearRace Dia. d	H ±.002	H1	Α	A1 ±.002	Е	М	N		LinearRace Mounting Bolt N1	х	Υ	SR Mass lb/ft
SR-8	SR-8-PD	SRA-8	.500	1.125	.19	1.50	.750	1.00	.25	.17	#6	#6-32 x .88	4	2	.60
SR-16	SR-16-PD	SRA-16	1.000	1.750	.25	2.13	1.063	1.50	.50	.28	1/4	½-20 x 1.50	6	3	1.40
SR-24	SR-24-PD	SRA-24	1.500	2.500	.38	3.00	1.500	2.25	.69	.34	⁵ ⁄16	%-16 x 2.00	8	4	2.60
SR-32	SR-32-PD	SRA-32	2.000	3.250	.50	3.75	1.875	2.75	.88	.41	3/8	½-13 x 2.50	8	4	4.20

Туре	XSR/X	SRA Li	near	Rac	e S	upp	ort	Rail	s and A	ssemblie	s	(1	Dimensi	ons	in	inc	hes)
XSR With Mounting	Assy. With Solid	Nominal LinearRace	H 001	H1	Α	E	M		N2			N	13	α	X	Y	XSR Mass
Holes	LinearRace	Diameter	+.000					Hole	Bolt	Counterbore	Hole	Bolt	Counterbore	deg			lb/ft
XSR-32	XSRA-32	2.000	2.750	1.00	4.50	3.13	.88	.56	½-13 x 2	1 x .75 DP	.56	.50	1 x .63 DP	15	4	1.97	16
XSR-48	XSRA-48	3.000	4.000	1.31	6.00	4.25	1.25	.81	3/4-10 x 2.75	1.44 x 1.13 DP	.69	.63	1.25 x .75 DP	25	6	2.97	31

Waymount 60 Case LinearRace Support Block	J,K are Total Adjustment
For installation see Page 142	Vertical Adjustment Horizontal Adjustment Adjustment Adjustment W

Waymou	unt Linear	Race	Sup	port	Bloc	k						(Di	mens	sions	in in	ches)
Waymount Part Number	Nominal LinearRace Diameter d	L	Н	W	A	В	С	Е	F	G ⁽⁴⁾	J	K	M	N	Р	Mass lb
WM-8	.500	1.50	1.06	1.75	.50	.88	.25	.75	.22	8-32	.05	.09	.69	.50	.44	.20
WM-16	1.000	2.00	1.50	2.50	.75	1.25	.31	1.06	.28	1/4-28	.06	.13	.81	.69	.69	.50
WM-24	1.500	2.50	2.00	3.50	1.19	1.63	.44	1.19	.34	5/16-24	.13	.13	1.00	.75	.75	1.10
WM-32	2.000	3.00	2.50	4.00	1.44	1.88	.50	1.38	.41	3%-24	.13	.13	1.25	.94	1.00	1.80
WM-48	3.000	5.00	4.31	6.75	2.38	3.38	.75	2.63	.66	⁵ %-18	.13	.13	2.25	1.63	1.50	10.20

⁽⁴⁾Supplied with Waymount LinearRace support block

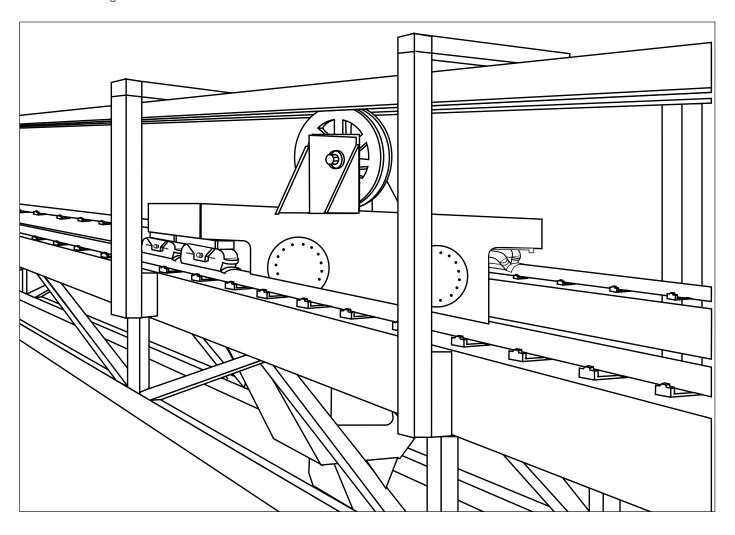
©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assured beyond such replacement.

Overhead Carriage for Log-Processing Machine

Objective

Design overhead carriage system using RoundWay linear roller bearings mounted on 60 Case LinearRace ways.

Solution


RoundWay linear roller bearings' high load capacity will be used to move heavy logs into and out of the band saws. The carriages shuttle back and forth on 100 foot long 60 Case LinearRace ways until the final cut is made.

Products specified

- 2 RW-32-V (RoundWay Linear Roller bearing Dual Type)
- 2 RW-32-S (RoundWay Linear Roller bearing Single Type)
- 2 2 L PD CTL x 100 ft (60 Case LinearRace)

Benefits

RoundWay linear roller bearings provide operating speeds up to 100 ft/s, optimizing productivity and minimizing cost. The RoundWay bearings' low coefficient of friction allows the use of smaller, less expensive drive motors, belts, linkages and gears. The seal keeps out wood chips and other contaminants and maximizes bearing life.

FluoroNyliner Bushing Bearing

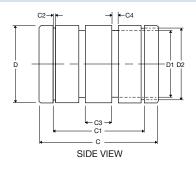
Thomson FluoroNyliner* Bushing Bearing Offers:

- High performance in contaminated, washdown, or submerged environments
- Proprietary, self-lubricating, composite bearing liner TEP 950
- Low friction, ideally suited for linear and rotary motion
- · Precision machined aluminum sleeve
- Excellent performance in high vibration and mechanical shock applications
- Corrosion resistance
- Product availability in industry standard sizes from 0.25" to 2.00"
- Closed, Open, and Self-Aligning configurations
- Load capacities up to 14,000 lbf
- · Integral seals
- Closed, Open, and Flanged Pillow Blocks available in single or twin versions
- Available from over 1800 distributors worldwide

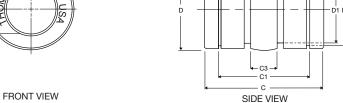
FluoroNyliner* Bushing Bearing

Eight Bearing Configurations

COMMON SPECIFICATIONS



Nominal Bearing		LinearRace* afting		mended		Effective	Max Static
Diameter		316 Stainless	Shart Dia	meter (in.)	Weight	Surface	Load ²
(in.)	Carbon Steel	Steel	Min	Max	lbs.	Area (in²)	lbf
0.250	1/4 L	1/4 L 316 SS	0.2490	0.2495	0.008	0.19	300
0.375	3/8 L	3/8 L 316 SS	0.3740	0.3745	0.013	0.33	500
0.500	1/2 L	1/2 L 316 SS	0.4990	0.4995	0.030	0.63	970
0.625	5/8 L	5/8 L 316 SS	0.6240	0.6245	0.072	0.94	1450
0.750	3/4 L	3/4 L 316 SS	0.7490	0.7495	0.090	1.22	1900
1.000	1 L	1 L 316 SS	0.9990	0.9995	0.190	2.25	3500
1.250	1 1/4 L	1 1/4 316 SS	1.2490	1.2495	0.380	3.28	5100
1.500	1 1/2 L	1 1/2 L 316 SS	1.4989	1.4994	0.610	4.51	7000
2.000	2 L	2 L 316 SS	1.9987	1.9994	1.230	8.01	12500



SELF-ALIGNING BEARING

CLOSED BEARING

STANDARD BEARINGS

						0										
	Precision	I.D.		Compen	sated I.D	. (1)		CI	losed Bea	aring Dim	ensions	(in.)				
Part	d (in.)	Part	d (in.)	Nominal Bearing	[)			(C1	C2	C3	C4
Number	Min	Max	Number	Min	Max	Diameter	Max	Min	D1	D2	Min	Max	Min	Min		
FNYBU-04	0.2510	0.2520	FNYBU-04-L	0.2530	0.2540	0.250	0.4990	0.5000	0.399	0.467	0.735	0.750	0.519	0.041	0.125	0.080
FNYBU-06	0.3760	0.3770	FNYBU-06-L	0.3780	0.3790	0.375	0.6240	0.6250	0.524	0.596	0.860	0.875	0.634	0.041	0.187	0.080
FNYBU-08	0.5010	0.5020	FNYBU-08-L	0.5030	0.5040	0.500	0.8740	0.8750	0.712	0.833	1.235	1.250	0.956	0.046	0.250	0.125
FNYBU-10	0.6260	0.6270	FNYBU-10-L	0.6280	0.6290	0.625	1.1240	1.1250	0.962	1.070	1.485	1.500	1.101	0.056	0.312	0.125
FNYBU-12	0.7510	0.7520	FNYBU-12-L	0.7540	0.7550	1.750	1.2490	1.2500	1.187	1.195	1.610	1.625	1.163	0.056	0.312	0.125
FNYBU-16	1.0010	1.0010	FNYBU-16-L	1.0040	1.0050	1.000	1.5614	1.5625	1.402	1.490	2.235	2.250	1.745	0.068	0.500	0.125
FNYBU-20	1.2520	1.2520	FNYBU-20-L	1.2550	1.2560	1.250	1.9990	2.0000	1.837	1.889	2.605	2.625	2.015	0.070	0.625	0.125
FNYBU-24	1.5010	1.5022	FNYBU-24-L	1.5050	1.5062	1.500	2.3740	2.3750	2.152	2.265	2.985	3.000	2.402	0.086	0.750	0.165
FNYBU-32	2.0010	2.0024	FNYBU-32-L	2.0060	2.0074	2.000	2.9990	3.0000	2.775	2.860	3.985	4.000	3.180	0.103	1.000	0.188

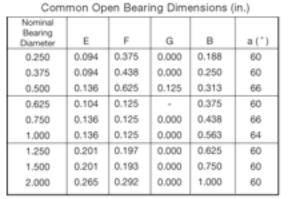
STANDARD SELF-ALIGNING BEARINGS

	Precision	I.D.		Compen	sated I.D	. (1)		CI	losed Bea	aring Dim	ensions	(in.)				
Part	d (i	n.)	Part	d (in.)	Nominal Bearing	[)			(C1	C2	C3	C4
Number	Min	Max	Number	Min	Max	Diameter	Max	Min	D1	D2	Min	Max	Min	Min		
FNYBU-04-A	0.2510	0.2520	FNYBU-04-AL	0.2530	0.2540	0.250	0.4990	0.5000	0.399	0.467	0.735	0.750	0.519	0.041	0.125	0.080
FNYBU-06-A	0.3760	0.3770	FNYBU-06-AL	0.3780	0.3790	0.375	0.6240	0.6250	0.524	0.596	0.860	0.875	0.634	0.041	0.187	0.080
FNYBU-08-A	0.5010	0.5020	FNYBU-08-AL	0.5030	0.5040	0.500	0.8740	0.8750	0.712	0.833	1.235	1.250	0.956	0.046	0.250	0.125
FNYBU-10-A	0.6260	0.6270	FNYBU-10-AL	0.6280	0.6290	0.625	1.1240	1.1250	0.962	1.070	1.485	1.500	1.101	0.056	0.312	0.125
FNYBU-12-A	0.7510	0.7520	FNYBU-12-AL	0.7540	0.7550	1.750	1.2490	1.2500	1.187	1.195	1.610	1.625	1.163	0.056	0.312	0.125
FNYBU-16-A	1.0010	1.0010	FNYBU-16-AL	1.0040	1.0050	1.000	1.5614	1.5625	1.402	1.490	2.235	2.250	1.745	0.068	0.500	0.125
FNYBU-20-A	1.2520	1.2520	FNYBU-20-AL	1.2550	1.2560	1.250	1.9990	2.0000	1.837	1.889	2.605	2.625	2.015	0.070	0.625	0.125
FNYBU-24-A	1.5010	1.5022	FNYBU-24-AL	1.5050	1.5062	1.500	2.3740	2.3750	2.152	2.265	2.985	3.000	2.402	0.086	0.750	0.165
FNYBU-32-A	2.0010	2.0024	FNYBU-32-AL	2.0060	2.0074	2.000	2.9990	3.0000	2.775	2.860	3.985	4.000	3.180	0.103	1.000	0.188

⁽¹⁾ Compensated I.D. bearings have additional running clearance, ideally suited for high speed and non-parallel shaft applications.

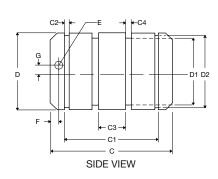
⁽²⁾ Open bearings operating in shear should be derated by 40%. Open bearings operating in tension should be derated by 70%.

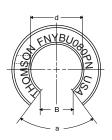
©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

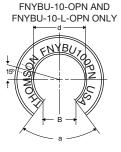

Website: www.thomsonballbushing.com

FluoroNyliner*

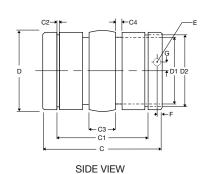
FluoroNyliner* Bushing Bearing






OPEN BEARING

SELF-ALIGNING OPEN BEARING



FRONT VIEW

FRONT VIEW

STANDARD OPEN BEARINGS

Pr	ecision I	.D.	Co	mpensa	ted I.D.	(1)		О	pen Bea	ring Dime	ensions (i	n.)				
Part	d (in.)	Part	d (ir	1.)	Nominal	С)					C1	C2	СЗ	C4
Number	Min	Max	Number	Min	Max	Bearing Diameter	Max	Min	D1	D2	Min	Max	Min	Min		
FNYBU-04-OPN	0.2510	0.2520	FNYBU-04-L-OPN	0.2530	0.2540	0.250	0.4990	0.5000	0.399	0.467	0.735	0.750	0.519	0.041	0.125	0.080
FNYBU-06-OPN	0.3760	0.3770	FNYBU-06-L-OPN	0.3780	0.3790	0.375	0.6240	0.6250	0.524	0.596	0.860	0.875	0.634	0.041	0.187	0.080
FNYBU-08-OPN	0.5010	0.5020	FNYBU-08-L-OPN	0.5030	0.5040	0.500	0.8740	0.8750	0.712	0.833	1.235	1.250	0.956	0.046	0.250	0.125
FNYBU-10-OPN	0.6260	0.6270	FNYBU-10-L-OPN	0.6280	0.6290	0.625	1.1240	1.1250	0.962	1.070	1.485	1.500	1.101	0.056	0.312	0.125
FNYBU-12-OPN	0.7510	0.7520	FNYBU-12-L-OPN	0.7540	0.7550	1.750	1.2490	1.2500	1.187	1.195	1.610	1.625	1.163	0.056	0.312	0.125
FNYBU-16-OPN	1.0010	1.0010	FNYBU-16-L-OPN	1.0040	1.0050	1.000	1.5614	1.5625	1.402	1.490	2.235	2.250	1.745	0.068	0.500	0.125
FNYBU-20-OPN	1.22510	1.2520	FNYBU-20-L-OPN	1.2550	1.2560	1.250	1.9990	2.0000	1.837	1.889	2.605	2.625	2.015	0.070	0.625	0.125
FNYBU-24-OPN	1.5010	1.5022	FNYBU-24-L-OPN	1.5050	1.5062	1.500	2.3740	2.3750	2.152	2.265	2.985	3.000	2.402	0.086	0.750	0.165
FNYBU-32-OPN	2.0010	2.0024	FNYBU-32-L-OPN	2.0060	2.0074	2.000	2.9990	3.0000	2.775	2.860	3.985	4.000	3.180	0.103	1.000	0.188

STANDARD SELF-ALIGNING OPEN BEARINGS

Pr	ecision I	.D.	Co	mpensa	ted I.D.	(1)		Self-	Aligning	Bearing [Dimensio	ns (in.)				
Part	d (in.)	Part	d (ir	ı.)	Nominal Bearing)			C		C1	C2	С3	C4
Number	Min	Max	Number	Min	Max	Diameter	Max	Min	D1	D2	Min	Max	Min	Min		
FNYBU-04-OPN	0.2510	0.2520	FNYBU-04-AL-OPN	0.2530	0.2540	0.250	0.4990	0.5000	0.399	0.467	0.735	0.750	0.519	0.041	0.125	0.080
FNYBU-06-OPN	0.3760	0.3770	FNYBU-06-AL-OPN	0.3780	0.3790	0.375	0.6240	0.6250	0.524	0.596	0.860	0.875	0.634	0.041	0.187	0.080
FNYBU-08-OPN	0.5010	0.5020	FNYBU-08-AL-OPN	0.5030	0.5040	0.500	0.8740	0.8750	0.712	0.833	1.235	1.250	0.956	0.046	0.250	0.125
FNYBU-10-OPN	0.6260	0.6270	FNYBU-10-AL-OPN	0.6280	0.6290	0.625	1.1240	1.1250	0.962	1.070	1.485	1.500	1.101	0.056	0.312	0.125
FNYBU-12-OPN	0.7510	0.7520	FNYBU-12-AL-OPN	0.7540	0.7550	1.750	1.2490	1.2500	1.187	1.195	1.610	1.625	1.163	0.056	0.312	0.125
FNYBU-16-OPN	1.0010	1.0010	FNYBU-16-AL-OPN	1.0040	1.0050	1.000	1.5614	1.5625	1.402	1.490	2.235	2.250	1.745	0.068	0.500	0.125
FNYBU-20-OPN	1.22510	1.2520	FNYBU-20-AL-OPN	1.2550	1.2560	1.250	1.9990	2.0000	1.837	1.889	2.605	2.625	2.015	0.070	0.625	0.125
FNYBU-24-OPN	1.5010	1.5022	FNYBU-24-AL-OPN	1.5050	1.5062	1.500	2.3740	2.3750	2.152	2.265	2.985	3.000	2.402	0.086	0.750	0.165
FNYBU-32-OPN	2.0010	2.0024	FNYBU-32-AL-OPN	2.0060	2.0074	2.000	2.9990	3.0000	2.775	2.860	3.985	4.000	3.180	0.103	1.000	0.188

(1) Compensated I.D. bearings have additional running clearance, ideally suited for high speed and non-parallel shaft applications. NOTE: Max static load for open bearings operating in shear should be derated by 40%. Open bearings operating in tension should be derated by 70%.

FluoroNyliner* Bushing Bearing Pillow Blocks

For easiest installation, order Pillow Blocks with factory installed FluoroNyliner* Bushing bearings.

THREE PILLOW BLOCK CONFIGURATIONS

CLOSED

CLOSED BEARING PILLOW BLOCKS

- For end supported applications
- Choose twin pillow blocks for twice the load capacity
- Order with seals for heavily contaminated environments
- Available as single or twin pillow blocks

OPEN

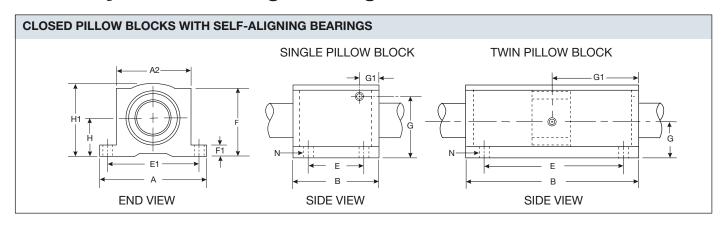
OPEN BEARING PILLOW BLOCKS

- For continuously supported applications
- Choose compensated I.D. bearings for non-parallel shafting
- Order with seals for heavily contaminated environments
- Available as single or twin pillow blocks

FLANGED

FLANGED PILLOW BLOCKS WITH CLOSED BEARINGS

- For low profile applications such as packaging equipment
- Choose precision I.D. bearings for precision fit-up
- Available with self-aligning or compensated I.D. bearings
- Available as single or twin pillow blocks


Page 120

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

Website: www.thomsonballbushing.com

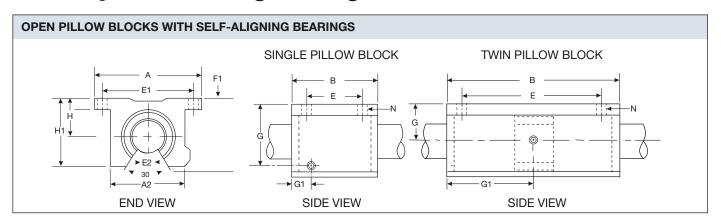
FluoroNyliner* Bushing Bearing Pillow Blocks

CLOSED SINGLE PILLOW BLOCKS WITH SELF-ALIGNING BEARINGS

Precision	on I.D.	Coi	npens	ated I.I	O. (1)			Twin I	Pillow BI	ock Dim	ension	s (in.)				
Part Number	Part Number	H ±0.003	H1	А	A2	В	E ±0.010	E1 ±0.010	F	F1	G	G1	Hole	/ Bolt	Pillow Block Mass (lb)	Max Static Load (lbf)
FNYBU-PB-04-A-LS	FNYBU-PB-04-AL-LS	.437	.81	1.63	1.00	1.19	.750	1.313	.75	.19	.44	.22	.16	#6	.10	300
FNYBU-PB-06-A-LS	FNYBU-PB-06-AL-LS	.500	.94	1.75	1.13	1.31	.875	1.438	.88	.19	.50	.22	.16	#6	.13	500
FNYBU-PB-08-A-LS	FNYBU-PB-08-AL-LS	.687	1.25	2.00	1.38	1.69	1.000	1.688	1.13	.25	.59	.84	.16	#6	.40	970
FNYBU-PB-10-A-LS	FNYBU-PB-10-AL-LS	.875	1.63	2.50	1.75	1.94	1.125	2.125	1.44	.28	.85	.68	.19	#8	1.00	1450
FNYBU-PB-12-A-LS	FNYBU-PB-12-AL-LS	.937	1.75	2.75	1.88	2.06	1.250	2.375	1.56	.31	.94	.72	.19	#8	1.20	1900
FNYBU-PB-16-A-LS	FNYBU-PB-16-AL-LS	1.187	2.19	3.25	2.38	2.81	1.750	2.875	1.94	.38	1.19	.86	.22	#10	2.40	3500
FNYBU-PB-20-A-LS	FNYBU-PB-20-AL-LS	1.500	2.81	4.00	3.00	3.63	2.000	3.500	2.50	.44	1.50	1.20	.22	#10	5.00	5100
FNYBU-PB-24-A-LS	FNYBU-PB-24-AL-LS	1.750	3.25	4.75	3.50	4.00	6.500	2.500	2.88	.50	1.75	1.25	.28	1/4	7.80	7000
FNYBU-PB-24-A-LS	FNYBU-PB-24-AL-LS	2.125	4.06	6.00	4.50	5.00	3.250	3.250	3.63	.63	2.12	1.58	.41	1/4	7.80	12,500

CLOSED TWIN BEARING PILLOW BLOCKS WITH SELF-ALIGNING BEARINGS

Precisi	on I.D.	Cor	npens	ated I.I	D. (1)			Twin	Pillow Bl	ock Dim	ension	s (in.)				
Part Number	Part Number	H ±0.003	H1	А	A2	В	E ±0.010	E1 ±0.010	F	F1	G	G1	N	-	Pillow Block	Max Static
													Hole	/ Bolt	Mass (lb)	Load (lbf)
FNYBU-TWN-04-A-LS	FNYBU-TWN-04-AL-LS	.437	.81	1.63	1.00	2.50	2.000	1.313	.75	.19	.44	1.25	.16	#6	.19	600
FNYBU-TWN-06-A-LS	FNYBU-TWN-06-AL-LS	.500	.94	1.75	1.13	2.75	2.050	1.438	.88	.19	.50	1.37	.16	#6	.25	1000
FNYBU-TWN-08-A-LS	FNYBU-TWN-08-AL-LS	.687	1.25	2.00	1.38	3.50	2.000	1.688	1.13	.25	.59	1.75	.16	#6	.40	1940
FNYBU-TWN-10-A-LS	FNYBU-TWN-10-AL-LS	.875	1.63	2.50	1.75	4.00	3.000	2.125	1.44	.28	.85	2.00	.19	#8	1.00	2900
FNYBU-TWN-12-A-LS	FNYBU-TWN-12-AL-LS	.937	1.75	2.75	1.88	4.50	3.500	2.375	1.56	.31	.94	2.25	.19	#8	1.20	3800
FNYBU-TWN-16-A-LS	FNYBU-TWN-16-AL-LS	1.187	2.19	3.25	2.38	6.00	4.500	2.875	1.94	.38	1.19	3.00	.22	#10	2.40	7000
FNYBU-TWN-20-A-LS	FNYBU-TWN-20-AL-LS	1.500	2.81	4.00	3.00	7.50	5.500	3.500	2.50	.44	1.50	3.75	.22	#10	5.00	10,200
FNYBU-TWN-24-A-LS	FNYBU-TWN-24-AL-LS	1.750	3.25	4.75	3.50	9.00	6.500	4.125	2.88	.50	1.75	4.50	.28	1/4	7.80	14,000


⁽¹⁾ Compensated I.D. bearings have additional running clearance, ideally suited for high speed and non-parallel shaft applications.

Note: For Pillow Block Seals or non-self-aligning bearings see Part Number Matrix on Page 123.

⁽²⁾ All dimensions in inches unless otherwise noted.

FluoroNyliner* Bushing Bearing Pillow Blocks

OPEN SINGLE PILLOW BLOCKS WITH SELF-ALIGNING BEARINGS

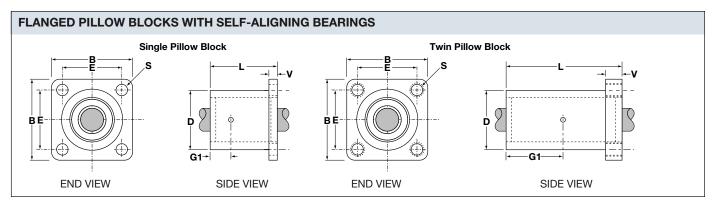
Precision	on I.D.	Cor	npens	ated I.I	O. (1)			Single	Pillow B	lock Din	nensior	ns (in.)			
Part Number	Part Number	Н	H1	Α	A2	В	E	E1	F1	G	G1	N N		Pillow	Max
		±0.003					±0.010	±0.010				Hole / Bolt		Block Mass (lb)	Static Load ⁽³⁾ (lbf)
FNYBU-PBO-08-A-LS	FNYBU-PBO-08-AL-LS	.687	1.25	2.00	1.38	1.69	1.000	1.688	.25	.69	.84	.16	#6	.20	970
FNYBU-PBO-10-A-LS	FNYBU-PBO-10-AL-LS	.875	1.63	2.50	1.75	1.94	1.125	2.125	.28	.70	.68	.19	#8	.50	1450
FNYBU-PBO-12-A-LS	FNYBU-PBO-12-AL-LS	.937	1.75	2.75	1.88	2.06	1.250	2.375	.31	.94	.72	.19	#8	.60	1900
FNYBU-PBO-16-A-LS	FNYBU-PBO-16-AL-LS	1.187	2.19	3.25	2.38	2.81	1.750	2.875	.38	1.20	.86	.22	#10	1.20	3500
FNYBU-PBO-20-A-LS	FNYBU-PBO-20-AL-LS	1.500	2.81	4.00	3.00	3.63	2.000	3.500	.44	1.50	1.20	.22	#10	2.50	5100
FNYBU-PBO-24-A-LS	FNYBU-PBO-24-AL-LS	1.750	3.25	4.75	3.50	4.00	2.500	4.125	.50	1.75	1.25	.28	1/4	3.80	7000
FNYBU-PBO-32-A-LS	FNYBU-PBO-32-AL-LS	2.125	4.06	6.00	4.50	5.00	3.250	5.250	.63	2.12	1.58	.41	3/8	7.00	12,500

OPEN TWIN PILLOW BLOCKS WITH SELF-ALIGNING BEARINGS

Precision	on I.D.	Cor	npens	ated I.I	O. (1)			Twin I	Pillow Bl	ock Dim	ension	s (in.)			
Part Number	Part Number	H ±0.003	H1	А	A2	В	E +0.010	E1 ±0.010	F1	G	G1	N	I	Pillow Block	Max Static
		±0.003					±0.010	±0.010				Hole	/ Bolt	Mass (lb)	
FNYBU-TWNO-08-A-LS	FNYBU-TWNO-08-AL-LS	.687	1.25	2.00	1.38	3.50	2.000	1.688	.25	.59	1.75	.16	#6	.40	1940
FNYBU-TWNO-10-A-LS	FNYBU-TWNO-10-AL-LS	.875	1.63	2.50	1.75	4.00	3.000	2.125	.28	.85	2.00	.19	#8	1.00	2900
FNYBU-TWNO-12-A-LS	FNYBU-TWNO-12-AL-LS	.937	1.75	2.75	1.88	4.50	3.500	2.375	.31	.94	2.25	.19	#8	1.20	3800
FNYBU-TWNO-16-A-LS	FNYBU-TWNO-16-AL-LS	1.187	2.19	3.25	2.38	6.00	4.500	2.875	.38	1.20	3.00	.22	#10	2.40	7000
FNYBU-TWNO-20-A-LS	FNYBU-TWNO-20-AL-LS	1.500	2.81	4.00	3.00	7.50	5.500	3.500	.44	1.50	3.75	.22	#10	5.00	10,200
FNYBU-TWNO-24-A-LS	FNYBU-TWNO-24-AL-LS	1.750	3.25	4.75	3.50	9.00	6.500	4.125	.50	1.75	4.50	.28	1/4	7.80	14,000

⁽¹⁾ Compensated I.D. bearings have additional running clearance, ideally suited for high speed and non-parallel shaft applications.

Note: For Pillow Block Seals or non-self-aligning bearings see Part Number Matrix on Page123.


⁽²⁾ All dimensions in inches unless otherwise noted.

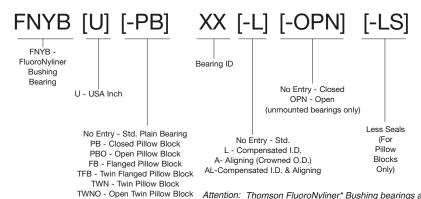
⁽³⁾ Open bearings operating in shear should be derated by 40%. Open bearings operating in tension should be derated by 70%.

Phone: 1-800-554-8466

Website: www.thomsonballbushing.com

Flanged Pillow Blocks with Self-Aligning Bearings

FLANGED SINGLE PILLOW BLOCKS WITH SELF-ALIGNING BEARINGS


Precisi	on I.D.	Compens	ated I.D. ([1)		Single Pillo	w Block Din	nensions (2)			
Part Number	Part Number	Nominal Bearing Diameter	В	E ±0.010	L	D	V	G1 ±0.010	S Shaft Hole Diameter	60 Case L Shaft D Min	inearRace* Diameter Max
FNYBU-FB-08-A-LS FNYBU-FB-12-A-LS FNYBU-FB-16-A-LS	FNYBU-FB-08-AL-LS FNYBU-FB-12-AL-LS FNYBU-FB-16-AL-LS	.500 .750 1.00	1.63 2.38 2.75	1.250 1.750 2.125	1.69 2.06 2.81	1.25 1.75 2.25	.25 .38 .50	.72 .89 1.27	.19 .22 .28	.4990 .7490 .9990	.4995 .7495 .9995
FNYBU-FB-20-A-LS FNYBU-FB-24-A-LS	FNYBU-FB-20-AL-LS FNYBU-FB-24-AL-LS	1.25 1.50	3.50 4.00	2.750 3.125	3.63 4.00	3.00 3.62	.63 .75	1.67 1.86	.35	1.2490 1.4989	1.2495

FLANGED TWIN PILLOW BLOCKS WITH SELF-ALIGNING BEARINGS

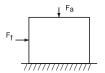
Precision	on I.D.	Compens	ated I.D. ((1)		Twin Pillo	w Block Dim	ensions (2)			
Part Number Diameter	Part Number	Nominal Bearing	В	E ±0.010	L	D	V	G1 ±0.010	S Thread	60 Case L Shaft Dia Min	
FNYBU-TFB-08-A-LS	FNYBU-FB-08-AL-LS	.500	1.63	1.250	3.20	1.25	.90	1.48	1/4 - 20	.4990	.4995
FNYBU-TFB-12-A-LS	FNYBU-FB-10-AL-LS	.750	2.38	1.750	3.95	1.75	.90	1.98	1/4 - 20	.7490	.7495
FNYBU-TFB-16-A-LS	FNYBU-FB-12-AL-LS	1.00	2.75	2.125	5.33	2.25	.90	2.67	1/4 - 18	.9990	.9995
FNYBU-TFB-20-A-LS	FNYBU-FB-16-AL-LS	1.25	3.50	2.750	6.70	3.00	.90	3.35	5/16 - 18	1.2490	1.2495
FNYBU-TFB-24-A-LS	FNYBU-FB-24-AL-LS	1.50	4.00	3.125	7.50	3.62	.100	3.75	5/16 - 16	1.4989	1.4994

⁽¹⁾ Compensated I.D. bearings have additional running clearance ideally suited for high speed and non-parallel shaft applications.

Note: For Pillow Block Seals, or Non-Self-Aligning Bearings see Part Number Matrix at bottom of this page.

[] = Part Number Specific Feature

Attention: Thomson FluoroNyliner* Bushing bearings are precision components. For best results and to preserve the bearing's warranty you must use the specified Thomson 60 Case* LinearRace* shafting.

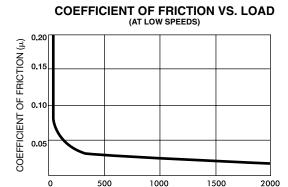

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

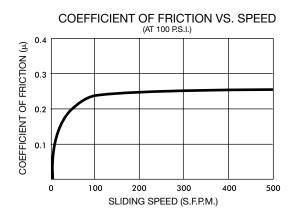
⁽²⁾ All dimensions in inches unless otherwise noted.

Frictional Characteristics:

Static: Tests performed on dry FNYBU-16 bearings indicate that the force required to initiate motion is dependent upon the applied load according to the following equation:

$$F_f = 1.3 + 0.18 F_a$$


Where:


 F_f = Friction force, static (lbf)

 F_a = Applied force (lbf)

Characteristic	Limit
Liner Temperature Range	-400° F to 550° F (-240° C to 288° C)
Velocity, dry	140 ft/min. Continuous
Velocity, dry	400 ft/min. Intermittent
Velocity, lubricated	400 ft/min. Continuous
Pressure	1500 psi
PV	10,000 psi ft/min

II) Dynamic: The coefficient of friction is dependent upon both the pressure and the velocity. Pressure: Coefficient of friction decreases rapidly with increase in pressure. Velocity: Coefficient of friction increases with an increase in velocity, and quickly stabilizes. For example, at 100 psi, the coefficient of friction is approximately 0.25 for velocities of 100ft/min and higher.

Wear Rates and Life Expectancy:

LOAD (PSI)

Wear rates: The wear rates of a plain bearing are dependent upon a number of variables, including characteristics of the counter-face, velocity, lubrication, load and contamination. Tests conducted on FNYBU-16 bearings operating in the linear mode at approximately 70 ft/min, and at a pressure of approximately 33 psi, demonstrated an average radial wear change of 0.0011 inches, after 80 million inches of travel. This yields the following formula:

$$W_R = 14x(10^{-6})xT$$

Where:

Page 124

W_R = Radial Wear (micro-inches)

T = Travel (inches)

II) Life expectancy: The life expectancy may be calculated from the wear rate. This is normally associated with the allowable radial clearance for a given application. The absolute wear limit is the bearing material thickness, which is 0.028 inches.

Phone: 1-800-554-8466

Website: www.thomsonballbushing.com

FLUORONYLINER* BUSHING BEARING CHEMICAL RESISTANCE CHART

		Rating **	
CHEMICAL	Liner	Standard Aluminum	Optional Hardcoat Anodized Aluminum
2 - butanone	Α		
Acetic acid, 20%	Α	С	С
Acetone	Α	В	В
Acetylene	Α		
Alkalines	Е		
Ammonia	Е		
Ammonia Anhydrous		В	В
Ammonium Chloride, 10%		D	D
Ammonium Hydroxide, 10%		D	D
Amyl Chloride	Α		
Analine	Α		
Barium Hydroxide		D	D
Beer	Α	В	В
Benzaldehyde or Benzonitrile	Α		
Benzenesulfonic Acid	Α	A	Α
Boric Acid solutions	Α	В	В
Bromine	Α		
Butane		С	С
Calcium Chloride, 20%	Α	C	C
Calcium Hydroxide, 10%	E	C	C
Calcium Hypochlorite	A	C	C
	A		
Camphor Oil or Carbon Sulfide Carbon Dioxide	A		
Carbon Monoxide	A	В	В
	A		
Carbon Tetrachloride	A	В	В
Chloria Hydrate or Chloroacetic Acid	A	C	С
Chlorine gas, dry	A	D	D
Chlorine gas, wet	A		
Chloroform or Chlorosulfonic Acid	A		
Chromic Acid, 10%	A	С	B B
Citric Acid, 5%		В	В
Concentrated Oxidizing Acids	A		
Creosote or Cresol	A		
Decalin or Dichlorobenzene	A		
Diethyl Ether or Dimethylamine	A		
Dimethyl Sulfoxide	A		
Ethyl Acetate	A		
Ethyl Alcohol	A	В	В
Ethylene Glycol	A	В	В
Ferric Chloride, 50%	A	D	D
Ferric Nitrate	A	<u> </u>	
Ferric Sulfate	A		
Ferrous Sulfate	A		
Fluoboric Acid	E		
Fluorinating Agents, Strong	E		
Fluorine > 140°F & Dry Gas > 250°F	E		
Fluosilicic Acid	E		
Gasoline	Α	С	С
Hydrobromic Acid	Α		

		Rating **	
CHEMICAL	Liner	Standard Aluminum	Optional Hardcoat Anodized Aluminum
Hydrochloric Acid, 20% or 35%	А	D	D
Hydrocyanic Acid	А	D	D
Hydrocyanic Acid, 10%		С	С
Hydrofluoric Acid	E	D	D
Hydrofluosilicic Acid	E		
Hydrogen Fluoride, Dry > 250°F	E		
Hydrogen Peroxide - dilute	A	В	В
Hydrogen Sulfide, Dry	A	С	В
Hydrogen Sulfide, Moist	A		
Hydroxides	E		
Kerosene		С	С
Lactic Acid, 10%	A	С	С
Magnesium Chloride, 50%	A	D	D
Mercury or Silver Salts	A	D	D
Methyl Alcohol		С	С
Methylene Chloride	А	В	В
Methylethyl Ketone	А	С	С
Mineral Oil	А	С	С
Molten Alkali Metals	E		
Molten Anhydrous Bases	E		
Naptha	А	С	С
Nitric Acid, 70%	E	D	D
Nitro Benzene	А		
Oleum	А		
Phosphoric Acid, 10%	А	D	D
Potassium Chlorate	E		
Potassium or Sodium Cyanide	A		
Potassium Dichromate or Nitrate	А		
Potassium Hydroxide	E		
Sea Water	Α	С	В
Sodium Chlorate	Α		
Sodium Chloride	Α		
Sodium Hydroxide, 20%	С	D	D
Sodium Hypochlorite, 20%	А	С	С
Sodium Peroxide, 10%		С	С
Stannous Chloride	А		
Sulfur Dioxide, dry	A	С	С
Sulfur Dioxide, 5% +H ₂ O	А	D	D
Sulfuric Acid, 50%	А	D	D
Trichlorethylene	А		
Toluene (122°F/50°C)	А	В	В
Trifluoroacetic Acid	А		
Turpentine	А	С	В
Water, demineralized	А	С	В
Water, distilled	А	D	С
Water, Sewage		D	С
Xylene	А	С	С
Zinc Chloride solutions	А	D	D

A = No Attack B = Minimal Material Loss C = Moderate Material Loss D = Significant Material Loss E = Not Recommended Chemical effects are at room temperature unless otherwise noted.

All information contained herein is believed to be correct but is presented without any guaranty, warranty or representation of any kind, express or implied. Changes in temperature, concentration and/or combinations of chemicals may cause different results. Prior to use, it is recommended that the material be tested to determine its compatibility with a specific application. Contact Thomson applications engineers for more detailed information at 1-800-554-8466.

^{**}Rating Key

Accessories Appendix

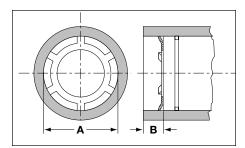
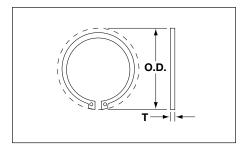

The Accessories Appendix contains the retaining rings, seals and combination bearings used with the products in this catalog.

Table of Contents

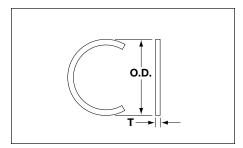
Retaining Rings	27
External Seals	28
Integral Seals	29
Resilient Mounts	30

Retaining Rings



Internal Retaining Rings (Type PR)

Push-in retaining rings, as shown, are for use with Super Smart, Super and Precision Steel Ball Bushing* closed type bearings. Each retaining ring is installed inside the housing bore at each end of the Ball Bushing bearing.

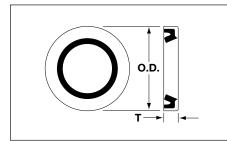

Internal Retain	ning Rings (Type PR)	(Dime	ensions in inches)
Part Number	Use with Ball Bushing Bearing Part Number	Nominal Housing Bore A	Minimum End Space Required B
PR-250	SUPER-4 or 4812 (1)	.500	.060
PR-375	SUPER-6 or 61014 (1)	.625	.060
PR-500	SUPER-8 or 81420 ⁽¹⁾	.875	.080
PR-625	SSU-10 or SUPER-10 or 101824 (1)	1.125	.080
PR-750	SSU-12 or SUPER-12 or 122026 (1)	1.250	.080
PR-1000	SSU-16 or SUPER-16 or 162536 (1)	1.563	.080
PR-1250	SSU-20 or SUPER-20 or 203242 (1)	2.000	.080
PR-1500	SSU-24 or SUPER-24 or 243848 (1)	2.375	.100
PR-2000	SUPER-32 or 324864 (1)	3.000	.100

⁽¹⁾ Applies to A and XA Type Precision Steel Ball Bushing bearings

External Retaining Rings (Type W)

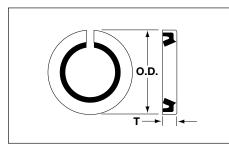
External retaining rings fit into the retaining ring grooves on the outside diameter of Super Smart, Super and Precision Steel Ball Bushing bearings to provide external mounting retention. Available in standard and stainless steel versions.

External Retaining Rings (Type C)

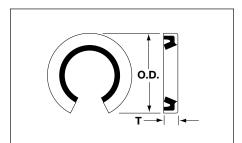

External retaining rings fit into the retaining ring grooves on the outside diameter of Super Smart, Super and Precision Steel Ball Bushing bearings (Open and Closed Type) to provide external mounting retention. Available in standard and stainless steel versions.

External Retain	ing Rings (Types	C and W)	(Dimens	ions in inches)
Standard Steel Part Number	Stainless Steel Part Number	Use with Ball Bushing Bearing Part Number	Т	O.D.
_	W-125-SS	INST-258-SS (2)	.025	.520
-	W-187-SS	INST-369-SS (2)	.025	.560
W-250	W-250-SS	SUPER-4 or 4812 (2)	.035	.720
C-250	C-250-SS	SUPER-4 OF 4612	.035	.550
W-375	W-375-SS	SUPER-6 or 61014 (2)	.035	.850
C-375	C-375-SS	SUPER-6 OF 6 10 14	.035	.673
W-500	W-500-SS	SUPER-8 or 81420 ⁽²⁾	.042	1.150
C-500	C-500-SS	30PEN-8 01 81420 -	.042	.923
W-625	W-625-SS	SSU-10 or SUPER-10	.050	1.510
C-625	C-625-SS	or 101824 ⁽²⁾	.050	1.180
W-750	W-750-SS	SSU-12 or SUPER-12	.050	1.620
C-750	C-750-SS	or 122026 ⁽²⁾	.050	1.301
W-1000	W-1000-SS	SSU-16 or SUPER-16	.062	2.040
C-1000	C-1000-SS	or 162536 ⁽²⁾	.062	1.620
W-1250	-	SSU-20 or SUPER-20	.062	2.500
C-1250	-	or 203242 ⁽²⁾	.062	2.040
W-1500	-	SSU-24 or SUPER-24	.078	2.910
C-1500	-	or 243848 ⁽²⁾	.078	2.429
W-2000	-	SUPER-32 or 324864 (2)	.093	3.600
W-2500	-	406080 ⁽²⁾	.109	4.420
W-3000	-	487296 ⁽²⁾	.109	5.310
W-4000	-	6496128 ⁽²⁾	.125	7.100

⁽²⁾ Applies to A, XA and OPN Type Precision Steel Ball Bushing bearings



External Seals


Seals for Fixed Diameter Housings

Double acting seals for Super Smart, Super and Precision Steel closed type Ball Bushing bearings. Standard and stainless versions. Sizes 1¹/2 inch and above use spring fingers to reinforce sealing capability which could add to seal drag.

Seals for Adjustable Housings

Double acting seals for Super Smart, Super and Precision Steel Ball Bushing bearings. Seals have a radial slot through the circumferences to facilitate diameter adjustment. Standard and stainless steel versions.

Seals for Open Type Housings

Double acting seals for Super Smart, Super and Precision Steel Ball Bushing Open Type bearings. Standard and stainless steel versions.

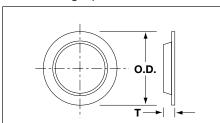
External Se	External Seals for Fixed Diameter Housings				inches)
Standard Steel Seal Part Number	Stainless Steel Seal Part Number	Use with Ball Bushing Bearing Part Number	Nominal LinearRace Diameter	Т	O.D.
S-250	S-250-SS	SUPER-4 or 4812 (1)	.250	.125	.504
S-375	S-375-SS	SUPER-6 or 61014 ⁽¹⁾	.375	.125	.629
S-500	S-500-SS	SUPER-8 or 81420 (1)	.500	.125	.879
S-625	S-625-SS	SSU-10 or SUPER-10 or 101824 (1)	.625	.125	1.129
S-750	S-750-SS	SSU-12 or SUPER-12 or 122026 (1)	.750	.125	1.254
S-1000	S-1000-SS	SSU-16 or SUPER-16 or 162536 (1)	1.000	.187	1.567
S-1250	_	SSU-20 or SUPER-20 or 203242 (1)	1.250	.375	2.004
S-1500	-	SSU-24 or SUPER-24 or 243848 (1)	1.500	.375	2.379
S-2000	_	SUPER-32 or 324864 (1)	2.000	.375	3.004
S-2500	_	406080 ⁽¹⁾	2.500	.375	3.756
S-3000		487296 ⁽¹⁾	3.000	.500	4.506
S-4000	_	6496128 ⁽¹⁾	4.000	.500	6.006

⁽¹⁾ Applies to A and XA Precision Steel Ball Bushing bearings

Seals for Ad	justable Housing	S	(Dimensio	ns in	inches)
Standard Steel Seal Part Number	Stainless Steel Seal Part Number	Use with Adjustable Type Ball Bushing Bearing Part Number	Nominal LinearRace Diameter	Т	O.D.
ADJ-S-500	ADJ-S-500-SS	SUPER-8 or 81420 (2)	.500	.125	.879
ADJ-S-625	ADJ-S-625-SS	SSU-10 or SUPER-10 or 101824 (2)	.625	.125	1.129
ADJ-S-750	ADJ-S-750-SS	SSU-12 or SUPER-12 or 122026 (2)	.750	.125	1.254
ADJ-S-1000	ADJ-S-1000-SS	SSU-16 or SUPER-16 or 162536 (2)	1.000	.187	1.567
ADJ-S-1250	-	SSU-20 or SUPER-20 or 203242 (2)	1.250	.375	2.004
ADJ-S-1500	-	SSU-24 or SUPER-24 or 243848 (2)	1.500	.375	2.379
ADJ-S-2000	-	SUPER-32 or 324864 (2)	2.000	.375	3.004
ADJ-S-2500	-	406080 (2)	2.500	.375	3.756
ADJ-S-3000	-	487296 ⁽²⁾	3.000	.500	4.506
ADJ-S-4000	-	6496128 ⁽²⁾	4.000	.500	6.006

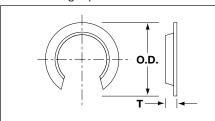
⁽²⁾ Applies to ADJ Type Precision Steel Ball Bushing bearings

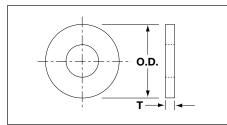
Seals for Ope	n Type Housings		(Dimension	s in ir	nches)
Standard Steel Seal Part Number	Stainless Steel Seal Part Number	Use with Open Type Ball Bushing Bearing Part Number	Nominal LinearRace Diameter	Т	O.D.
OPN-S-500	OPN-S-500-SS	SUPER-8 or 81420 (3)	.500	.125	.879
OPN-S-625	OPN-S-625-SS	SSU-10 or SUPER-10 or 101824	.625	.125	1.129
OPN-S-750	OPN-S-750-SS	SSU-12 or SUPER-12 or 122026	.750	.125	1.254
OPN-S-1000	OPN-S-1000-SS	SSU-16 or SUPER-16 or 162536	1.000	.187	1.567
OPN-S-1250	ı	SSU-20 or SUPER-20 or 203242	1.250	.375	2.004
OPN-S-1500	-	SSU-24 or SUPER-24 or 243848	1.500	.375	2.379
OPN-S-2000	-	SUPER-32 or 324864 (3)	2.000	.375	3.004
OPN-S-2500	-	406080 (3)	2.500	.375	3.756
OPN-S-3000	_	487296 ⁽³⁾	3.000	.500	4.506
OPN-S-4000	_	6496128 ⁽³⁾	4.000	.500	6.006


⁽³⁾ Applies to OPN Type Precision Steel Ball Bushing bearings

Integral Seals

Seals for Sealed Super Ball Bushing Bearings (Closed Type)


Double acting replacement seals for the Sealed Super Ball Bushing* bearing.

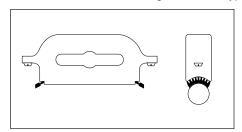

Seals for Sealed Super Ball Bushing Bearings (Closed Type)			(Dimensions	s in inches)
Part Number	Use with Super Ball Bushing Bearing Number	Nominal LinearRace Diameter	Т	O.D.
S-500-DD	SUPER-8-DD	.500	.120	.770
S-625-DD	SUPER-10-DD	.625	.120	1.010
S-750-DD	SUPER-12-DD	.750	.120	1.110
S-1000-DD	SUPER-16-DD	1.000	.180	1.390

Seals for Sealed Super Ball Bushing Bearings (Open Type)

Double acting replacement seals for the Sealed Super Ball Bushing bearing.

Seals for Sealed Sup	(Dimensions	s in inches)		
Part Number	Use with Super Ball Bushing Bearing Number	Nominal LinearRace Diameter	Т	O.D.
S-500-OPN-DD	SUPER-8-DD-OPN	.500	.120	.770
S-625-OPN-DD	SUPER-10-DD-OPN	.625	.120	1.010
S-750-OPN-DD	SUPER-12-DD-OPN	.750	.120	1.110
S-1000-OPN-DD	SUPER-16-DD-OPN	1.000	.180	1.390

Felt Seals for Closed Type Ball Bushing bearings


Felt seals for Super Smart, Super and Precision Steel closed type Ball Bushing bearings. Felt seals reduce drag for applications where reduced friction is critical. Felt seals provide minimal protection from the ingress of contamination. Use PR type external retaining rings for retention.

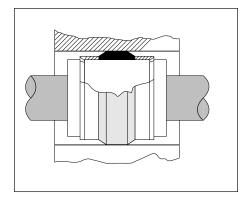
Felt Seals for	Closed Type Diameter Housings	(D	imension	s in inches)
Standard Felt Seal Part Number	Use with Ball Bushing Bearing Part Number	Nominal LinearRace Diameter	Т	O.D.
FS-250	SUPER-4 or 4812 (1)	.250	.125	.500
FS-375	SUPER-6 or 61014 (1)	.375	.125	.625
FS-500	SUPER-8 or 81420 (1)	.500	.125	.875
FS-625	SSU-10 or SUPER-10 or 101824 (1)	.625	.125	1.125
FS-750	SSU-12 or SUPER-12 or 122026 (1)	.750	.125	1.250
FS-1000	SSU-16 or SUPER-16 or 162536 (1)	1.000	.125	1.563
FS-1250	SSU-20 or SUPER-20 or 203242 (1)	1.250	.188	2.000
FS-1500	SSU-24 or SUPER-24 or 243848 (1)	1.500	.188	2.375
FS-2000	SUPER-32 or 324864 (1)	2.000	.188	3.000

⁽¹⁾ Applies to A, XA and ADJ Type Precision Steel Ball Bushing bearings

Seals for RoundWay Linear Roller Bearings

Standard seals for both single and dual types.

Seals for Ro	undWay Linear Roll	(Dimensions in inches)		
Seal Number	Nominal LinearRace Diameter	Overall Length L	Overall Width W	Overall Height from Centerline of LinearRace H
RS-16	1.000	5.00	1.00	2.25
RS-24	1.500	6.50	1.38	3.25
RS-32	2.000	8.50	1.88	4.25
RS-48	3.000	13.00	2.63	6.50
RS-64	4.000	17.00	3.38	8.50



©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assured beyond such replacement.

Resilient Mounts

Resilient Ball Bushing Bearing Mounts for Ease of Installation

Used with Precision Steel Ball Bushing bearings Type A and XA. Resilient Ball Bushing bearing mounts are sometimes used when absolute rigidity is not essential and where a slightly larger housing bore can be accommodated. The self-aligning feature of these mounts guarantee uniform load distribution over the entire length of the load carrying balls and compensates for slight errors in housing bores and parallel 60 Case* LinearRace* alignment. The mount consists of a band of resilient material that can be easily mounted to the outside diameter of the Ball Bushing bearing. After it is installed in the housing bore it provides permanent resilient, self-aligning support for the bearing. Resilient mounts consist of one rubber ring, 2 spacers and 2 retaining rings. Ball Bushing bearings must be purchased separately.

Resilient Ball Bushing	Resilient Ball Bushing Bearing Mounts			
Resilient Mount Assembly Part Number	Use with Ball Bushing Bearing Number	Nominal LinearRace Diameter	Recommended Housing Bore ±.005	
RSL-250	A or XA-4812	.250	.625	
RSL-375	A or XA-61014	.375	.750	
RSL-500	A or XA-81420	.500	1.000	
RSL-625	A or XA-101824	.625	1.313	
RSL-750	A or XA-122026	.750	1.438	
RSL-1000	A or XA-162536	1.000	1.813	
RSL-1250	A or XA-203242	1.250	2.313	
RSL-1500	A or XA-243848	1.500	2.750	

Engineering Support Appendix

The Engineering Support Appendix contains valuable information on the application and use of Thomson Ball Bushing* bearings, pillow blocks, 60 Case* LinearRace* shafts, 60 Case LinearRace supports and accessories.

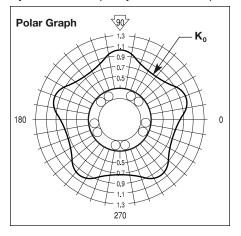
Table of Contents

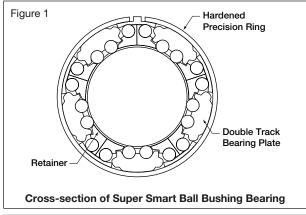
Performance Criteria	.132
Ball Bushing Life Expectancy and Load Capacity	.136
Load Considerations	.138
60 Case LinearRace Deflection	.139
Installation Guidelines	.140
Application Tips	.142
60 Case LinearRace Specifications	.143
Materials Engineering Specifications	.144
Engineering Conversion Factors	.145

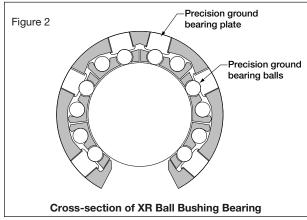
Performance Criteria

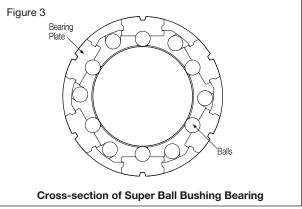
The following performance criteria relates to the use, installation and specification of Thomson Ball Bushing* bearings. Each performance criteria plays an important role in maximizing system effectiveness and life.

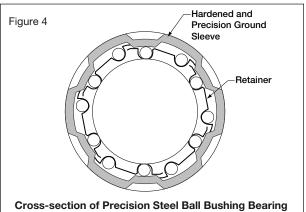
Dynamic Load Capacity


The Dynamic load capacity of a Ball Bushing bearing is determined by the reaction between the rolling elements and the inner and outer race. The rolling elements in a Ball Bushing bearing are a series of hardened and precision ground bearing balls. The inner race is a hardened and precision ground 60 Case LinearRace.


The outer race can be a hardened and precision ground, ball conforming, steel bearing plate or a hardened and precision ground steel bearing sleeve. The dynamic load capacity is also affected by the orientation of the ball tracks, the size of the balls, the shape of the ball conforming groove, the number of balls that are in load contact and more.


Since the introduction of the Ball Bushing bearing in 1945, Danaher Motion has designed and developed Ball Bushing bearing products that have continuously achieved dramatic increases in dynamic load capacity and life. Our most recent innovation is the Super Smart Ball Bushing bearing which has six times the dynamic load capacity or 216 times greater life than the traditional Ball Bushing bearing.


This increase in load capacity was achieved by maximizing the load reaction between the inner and outer races. This break-through in load capacity rivals that of linear guides while still retaining the added benefits of the RoundRail* Advantage.


The dynamic load capacity of all Thomson Ball Bushing bearings is based on a L_{10} life of two million inches of travel. The dynamic load capacity can be affected by the orientation of the bearing with respect to the load or the direction of the applied load. A polar graph is included with each product specification to assist you in maximizing the dynamic load capacity as well as the performance of the Ball Bushing bearing. To determine the actual dynamic load capacity enter the polar graph with the applied load direction until it intersects the polar curve. Next, multiply the proper correction factor by the dynamic load capacity listed in each product specification table.

Page 132

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of 17homson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement.

Website: www.thomsonballbushing.com

Engineering

Coefficient of Friction

The coefficient of friction of Thomson Ball Bushing* bearings ranges from 0.001 to 0.004. There are two components of the coefficient of friction, the rolling or operating friction and the static or breakaway friction.

Coefficient of Rolling Friction

The rolling coefficient of friction is measured by the force required to operate the Ball Bushing at a constant rate of travel. The formula for determining frictional resistance during operation is as follows:

 $P_f = P \times f_r$

Where,

 P_f = Frictional resistance (lb_f)

P = Resultant of externally applied loads (lbf)

f_r = Coefficient of rolling friction

The following table describes the coefficient of rolling friction of Ball Bushing bearings operating on Thomson 60 Case* LinearRace*. These values are grouped according to the number of ball circuits in each bearing. Friction coefficients are constant among bearings having three and four ball circuits, but slightly less for bearings with five or six ball circuits. A dry Ball Bushing bearing has the lowest coefficient of friction due to the complete absence of lubricant surface tension effects. Values for grease lubrication ranges from 100% greater in the smaller sizes to 20% to 50% greater in the larger sizes. Oil lubrication (medium/heavy, viscosity 64 cs @ 100°F) achieves frictional values slightly higher than those for grease lubrication.

Ball Bushing bearing coefficients of rolling friction (f _r)								
Bearing I.D.	Number of Ball			Load in % of Rolling Load Rating (for 2,000,000 inches of travel)				
1.0.	Circuits	Lubrication	125%	100%	75%	50%	25%	
1/4 0/0		No Lube	.0011	.0011	.0012	.0016	.0025	
1/4, 3/8, 1/2, 5/8	3 & 4	Grease Lube	.0019	.0021	.0024	.0029	.0044	
1/2, 5/0		Oil Lube	.0022	.0023	.0027	.0032	.0045	
	5	No Lube	.0011	.0011	.0012	.0015	.0022	
3/4, 1		Grease Lube	.0018	.0019	.0021	.0024	.0033	
		Oil Lube	.0020	.0021	.0023	.0027	.0036	
4 4 / 4		No Lube	.0011	.0011	.0012	.0014	.0019	
1 1/4 thru 4	6	Grease Lube	.0016	.0016	.0017	.0018	.0022	
lillu 4		Oil Lube	.0018	.0018	.0019	.0021	.0027	
F (0 II		No Lube	.0011	.0011	.0012	.0013	.0018	
5/8 thru 1 1/2	10	Grease Lube	.0014	.0014	.0015	.0016	.0019	
1 1/2		Oil Lube	.0016	.0016	.0017	.0019	.0025	

Coefficient of Static Friction

The coefficient of static or breakaway friction is measured by the force required to initiate Ball Bushing bearing movement. The formula used to determine static frictional resistance is:

 $P_f = P \times f_0$

where f_0 = Coefficient of static friction

The values for the coefficient of static friction or breakaway friction are not measurably affected by the number of ball circuits in the bearing or by the lubrication condition.

	Ball Bushing bearing coefficients of static friction (f _o)							
	Load in % of Rolling Load Rating							
125% 100% 75% 50% 25%								
.0028 .0030 .0033 .0036 .0040								

Seal Drag

Another variable that affects the frictional resistance in a Ball Bushing bearing system is seal drag. When seals are used to retain lubricant or to prevent entry of foreign particles, frictional resistance must be taken into account for determining total frictional drag. In applications where contamination is minimal, the seals can be removed to reduce frictional drag. In highly contaminated applications, seals, wipers and or scrapers are used to minimize the ingress of contamination into the bearing. This protective measure adds to the frictional drag of the bearing system. There is a fine line between minimizing frictional drag and maximizing contaminant protection which is controlled by the addition or removal of seals, wipers or scrapers. In applications that require low frictional drag in highly contaminated environments, contact Thomson application engineering.

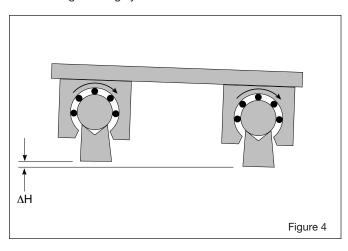
Lubrication

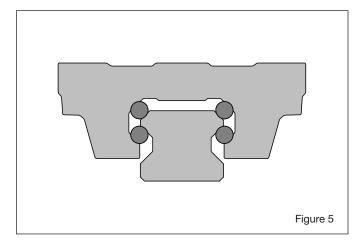
All Thomson Ball Bushing bearings require a small amount of grease or oil to operate. For most applications, lubricant is recommended to prevent wearing and rusting of the bearing surfaces. When linear speeds are high, a light oil should be used and the bearing should be prevented from running dry for a prolonged period of time. A medium to heavy oil or light grease has greater adhesion properties that afford longer bearing protection and minimize sealing problems. The numerous built-in pockets in the Ball Bushing bearing retainer allow grease to be stored for an extended period of time. Though not generally recommended, in some lightly loaded, low speed and highly contaminated applications, Ball Bushing bearings have been used without lubrication. For these types of applications contact Thomson application engineering.

All Thomson Ball Bushing bearings are shipped with a rust preventative oil. It is recommended that you lubricate the Ball Bushing bearing prior to installation and periodically during operation to assure that the Ball Bushing bearing does not run dry. For periodic relubrication, most Thomson Ball Bushing Pillow Blocks are equipped with an access for lubrication.

Danaher Motion can provide a specially formulated lubricant, specifically developed to meet a broad range of linear bearing applications. Thomson LinearLube* lubricant is a synthetic lubricant that utilizes suspended Teflon® in a specially formulated compound. LinearLube lubricant provides excellent performance characteristics in a wide range of applications. It is FDA listed, non-polluting and non-corrosive. LinearLube lubricant will not stain and adheres tightly to parts forming a virtually water resistant barrier.

- Maintains properties in operating temperatures from –65°F to 450°F
- USDA Rated HL (Non-Toxic)
- Will not oxidize in use
- 100% water resistant


Phone: 1-800-554-8466


Website: www.thomsonballbushing.com

The RoundRail Advantage

The RoundRail* Advantage is the inherent ability of a Ball Bushing bearing to accommodate torsional misalignment (caused by inaccuracies in carriage or base machining or by machine deflection) with little increase in stress to bearing components (Figure 4). This important feature to all Thomson Ball Bushing* bearing systems reduces installation time and

Performance Criteria Continued

cost, while maximizing performance.

Ball Bushing Bearing vs. Linear Guide

The major difference between a Ball Bushing bearing and linear guide system is primarily in the design of the inner race. The linear guide inner race has two, four or six ground grooves that guides the carriage and the precision balls. Due to the ball conforming nature of the grooves, the carriage is prevented from accommodating torsional misalignment (Figure 5). If orsional misalignment is introduced to a linear guide system, the component stress increases, reducing life and performance. In a Ball Bushing bearing system the inner race is a hardened and ground 60 Čase* LinearRace*. Due to the lack of ground grooves, the Ball Bushing bearing system can accommodate torsional misalignment and operate without added stress to bearing components.

60 Case LinearRace/Ball Bushing Bearing Fit-up

There are three basic fit-up conditions of a Ball Bushing bearing and 60 Case LinearRace, clearance, line-to-line and preload. In most product sections there are specification tables that detail

the Ball Bushing bearing working bore diameter and 60 Case LinearRace diameter tolerance as well as the fit-up between them. The clearance, line-to-line and preload conditions are shown by the abbreviation C for clearance, P for preload and .0000 for a line-to-line condition.

The clearance between a Super Smart and Super Ball Bushing bearing and a 60 Case LinearRace is a function of the Ball Bushing bearing working bore diameter and the diameter tolerance of the 60 Case LinearRace. The working bore diameter of a Super Smart or Super Ball Bushing bearing is a function of the housing bore diameter tolerance. In applications where high accuracy and repeatability is not required, clearance is acceptable. Clearance can be achieved by following the recommended housing bore guidelines found in the product specification sections. To check for a clearance condition, simply rotate the 60 Case LinearRace inside the Super Smart or Super Ball Bushing bearing while installed in a housing bore. If you can freely rotate the 60 Case LinearRace then a clearance condition is present.

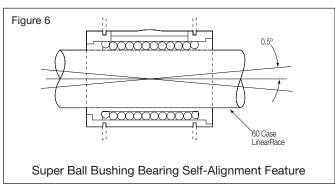
The clearance between the fixed diameter Precision Steel Ball Bushing bearing and the 60 Case LinearRace is a function of the Ball Bushing working bore and the 60 Case LinearRace diameter. When this Ball Bushing bearing is used with the recommended 60 Case LinearRace a clearance condition will always exist. For more details see the product specification sections.

In applications where accuracy and repeatability are critical, the Super Smart, Super and Precision Steel Ball Bushing bearings can be adjusted to a preload fit-up. The Super Smart and Super Ball Bushing bearings are inherently adjustable and when installed in a adjustable housing bore a preload condition can be achieved. In a nonadjustable housing a preload condition can be obtained by making the size of the housing bore smaller or by increasing the diameter of the 60 Case LinearRace. To test for a preload condition in an adjustable or nonadjustable housing, simply rotate the 60 Case LinearRace inside the Ball Bushing bearing while it is installed in the housing bore. If a slight drag is felt then a preload condition is present. When an adjustable housing is used the preload can be altered slightly. The Super Smart and Super Ball Bushing bearing are more tolerant to preload than the Precision Steel Ball Bushing bearing. Preload on a Super Smart and Super Ball Bushing bearing should be a maximum of .001 inch per inch of 60 Case LinearRace diameter. Preload on a Precision Steel Ball Bushing bearing should be a maximum of .0001 inch per inch of 60 Case LinearRace diameter. When all Ball Bushing bearings are preloaded, extra care must be taken in mounting the 60 Case LinearRace parallel.

Line-to-Line

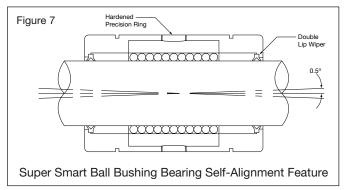
A line-to-line fit-up condition between a Ball Bushing bearing and 60 Case LinearRace is when no clearance or preload is present. A line-to-line fit-up can be achieved in an adjustable or fixed diameter housing. For more details see the product specification sections.

Examples of Ball Bushing bearing/60 Case LinearRace Fit-ups							
Ball Bushing Bearing Part Number	Working Bore Diameter	Recommended Housing Bore Diameter (Fixed)	Actual Working Bore Diameter	60 Case LinearRace Diameter	Ball Bushing Bearing/ 60 Case LinearRace Fit Up		
SUPER 20	1.2500/1.2494	2.0008/2.0000	1.2508/1.2494	1.2495/1.2490	.0018C/.0001P		
A-203242	1.2500/1.2494	-	1.2500/1.2494	1.2490/1.2485	.0015C/.0004C		
XA-203242	1.2500/1.2496	-	1.2500/1.2496	1.2495/1.2490	.0010C/.0001C		

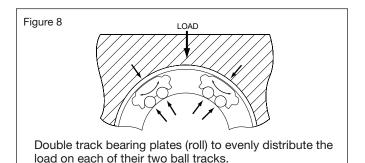


Website: www.thomsonballbushing.com

Engineering

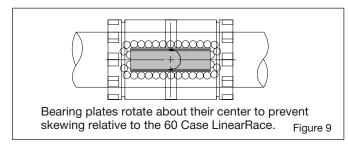

Self-Alignment

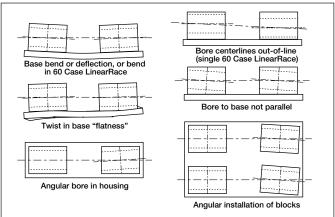
The Super Smart* and Super Ball Bushing* bearings are equipped with a built-in self-alignment feature that allows the bearing to absorb misalignment up to 0.5° per inch (Figure 6 and 7). This self-aligning feature allows the Super Smart and


Super Ball Bushing bearing to absorb misalignment caused by inaccuracies in housing bore alignment or 60 Case LinearRace deflection.

This rocking capability also provides smooth entry and exit of the precision balls into and out of the load zone assuring a constant low coefficient of friction. By compensating for misalignment, each bearing ball in the load carrying area is uniformly loaded providing maximum load capacity. Besides this rocking capability, only the Super Smart Ball Bushing Bearing provides two additional self-alignment features. They are Roll and Yaw.

Roll


The Super Smart Ball Bushing bearing plate is designed with the radius of its outer surface smaller than the inside radius of the precision outer ring (Figure 8). This feature allows the bearing plate to compensate for torsional misalignment and evenly distribute the load on each of its two ball tracks. The roll component assures maximum load capacity and travel life.



Yaw

The shape formed by the Rock and Roll features allows the Super Smart Ball Bushing bearing plate to rotate about its center (Figure 9). This allows the Super Smart Ball Bushing bearing to absorb skew caused by misalignment. The result is a constant low coefficient of friction and maximum bearing performance.

The diagrams below describe the conditions to which Super Smart and Super Ball Bushings automatically self-align. It is important to note that even though the Super Smart and Super Ball Bushing bearings self-align, they still cannot absorb an out-of-parallel 60 Case* LinearRace* condition. Tolerance to 60 Case LinearRace out-of-parallelism is a function of clearance between the bearing and its 60 Case LinearRace.

Ball Bushing Bearing Life Expectancy and Load Capacity

There are many factors that affect Ball Bushing* bearing travel life such as 60 Case* LinearRace* hardness, the resultant load, the direction of the resultant load and Ball Bushing bearing orientation. The dynamic load capacities and travel life graphs given in the specification tables found in each product section are based on a load applied at 90° relative to the horizontal plane with the Ball Bushing bearing oriented as shown in each corresponding polar graph. The dynamic load capacity is also based on using only Thomson specified 60 Case LinearRace that is hardened to HRC 60 minimum.

For considerations other than those described above, the following formula is used:

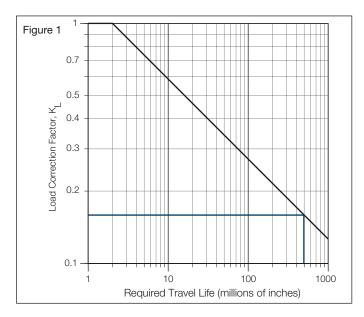
$$W_{\scriptscriptstyle R} \ = \ \frac{P}{K_O {\scriptstyle \bullet} K_S {\scriptstyle \bullet} K_L}$$

Where:

W_R = required dynamic load capacity (lb_f)

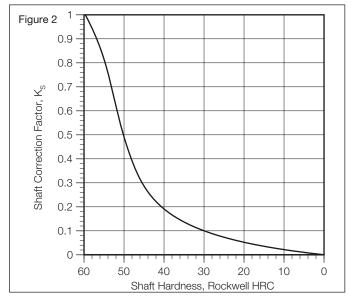
P = resultant of externally applied loads (lb_f)

K_O = factor for direction of resultant load


K_s = shaft hardness factor

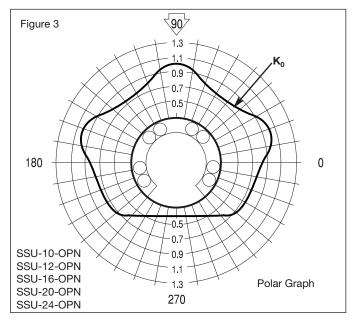
(Equals 1.0 for 60 Case LinearRace)

 K_1 = load correction factor


Travel Life

The load correction factor, K_L , can be found from Figure 1. To determine K_L , simply enter the chart with your required travel life and intersect the curve.

60 Case LinearRace Hardness


For shafts that do not meet 60 Case LinearRace hardness specifications, shaft hardness factor \mathbf{K}_{S} must be applied. To determine \mathbf{K}_{S} , simply enter Figure 2 with your shaft Rockwell hardness and intersect the curve.

Load Direction

In applications where the direction of the applied load is known, refer to the polar graphs on the product specification pages for the load correction factor, \mathbf{K}_0 . A polar graph is referenced in Figure 3 for example.

Once you have determined your required dynamic load capacity refer to the product specification table for the proper Ball Bushing bearing size.

Note: Thomson Linear Ball Bushing bearings are precision components. To preserve bearing warranty you must use the specified Thomson 60 Case LinearRace.

Engineering

Ball Bushing Bearing Size and Selection

The primary factors that influence the choice of bearing size are maximum load on a single Ball Bushing* bearing and required travel life. To determine the maximum load on a single Ball Bushing bearing refer to load considerations on page 138. To determine the required travel life refer to the following formula:

$$L_t = 2 \cdot s \cdot f \cdot L_h \cdot 60$$

Where:

L_t = required travel life in inches

s = stroke in inches

f = frequency in cycles per minute

 L_h = service life in hours

Once you have determined the maximum load on a single Ball Bushing bearing and the required travel life, enter the chart (Figure 4) and mark where the two lines intersect. All Ball Bushing bearings with curves that pass through, or above and to the right of that point may be suitable for the application.

Sample Calculation 1:

Determining the correct Ball Bushing bearing for your application.

In this example, a Super Smart Ball Bushing bearing end supported system is subjected to a load of 500 lb_f. The load is distributed equally over four Super Smart Ball Bushing bearings. The carriage reciprocates over a 12 inch stroke at a frequency of 100 complete cycles per minute. The minimum service life required is 3500 hours.

The first step is to determine the average load on each Super Smart Ball Bushing bearing.

$$P = 500/4 = 125 lb_f$$

Next, determine the equivalent travel life in inches.

L₊ = required travel life in inches

 $L_t = 2 \cdot s \cdot f \cdot L_h \cdot 60$

 $L_t = 2.12.100.3500.60$

 $L_{t} = 5.04 \times 10^{8}$ inches

Enter Figure 4 with a maximum load capacity on a single bearing of 125 lb $_{\rm f}$ and a required travel life of 5.04 x 10 $^{\rm s}$ inches. All Super Smart Ball Bushing bearing curves that pass through or above and to the right of that point, may be suitable for the application. For this application we will choose the SSU-12.

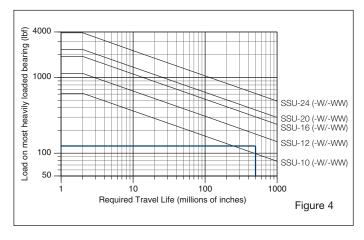
Sample calculation 2:

Determining the correct Super Smart Ball Bushing bearing for your application.

In this example, an open type Super Smart Ball Bushing bearing continuously supported system is subjected to a load of 500 lb_f and is hung upside down from the ceiling. The load is distributed equally over four Super Smart Ball Bushing bearings and the factor for the direction of the resultant load is .45 (Figure 3, page 136).

The carriage reciprocates over a 12 inch stroke at a frequency of 100 complete cycles per minute. The minimum service life required is 3500 hours.

The first step is to determine the average load on each Super Smart Ball Bushing bearing.


$$P = 500/4 = 125 lb_f$$

Determine the equivalent travel life in inches.

 $L_t = 2 \cdot s \cdot f \cdot L_h \cdot 60$

 $L_t = 2.12.100.3500.60$

 $L_t = 5.04 \times 10^8$ inches

Enter Figure 1 and determine K_L

The next step is to determine the required dynamic load capacity.

$$W_R = -\frac{P}{K_0 \cdot K_S \cdot K_L}$$

(K_S = 1, since we are using a Thomson 60 Case LinearRace HRC 60 minimum.)

$$W_{R} = \frac{125}{.45 \cdot 1 \cdot .17}$$

$$W_R = 1633 \, lb_f$$

To determine the proper Super Smart Ball Bushing bearing size enter the specification table on page 28. Choose the Super Smart Ball Bushing bearing with a load capacity higher than 1633 lb_f. The SSU-12-OPN has a dynamic load capacity of 1130 lb_f and the SSU-16-OPN has a dynamic load capacity of 1900 lb_f. The SSU-16-OPN is therefore the proper choice.

Load Consideration

When designing a linear motion system it is necessary to consider how the variables of operation will affect performance.

The following examples demonstrate how the position of the load and the center of gravity can influence the product selection. When evaluating your application, review each of the forces acting on your system and determine the product best for your needs.

Terms:

d₀ = distance between centerlines of pillow blocks

d₁ = distance between centerlines of 60Case LinearRace ways

d₂ = distance from centerline of carriage to load action point

d₃ = distance from centerline of carriage to load action point

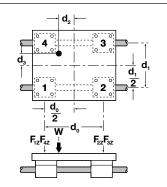
W = Load (lb_f)

F_{NX} = Force in the X-axis direction (lb_f)

F_{NY} = Force in the Y-axis direction (lb_f)

 F_{NZ} = Force in the **Z-axis** direction (lb_f)

$$F_{1Z} = \ \frac{W}{4} + \left(\frac{W}{2} \bullet \frac{d_2}{d_0}\right) - \ \left(\frac{W}{2} \bullet \frac{d_3}{d_1}\right)$$


$$\mathsf{F}_{\mathsf{2Z}} = \frac{\mathsf{W}}{\mathsf{4}} - \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{2}}}{\mathsf{d}_{\mathsf{0}}}\right) - \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{3}}}{\mathsf{d}_{\mathsf{1}}}\right)$$

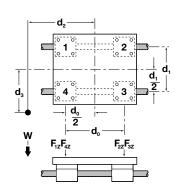
$$\mathsf{F}_{\mathsf{3Z}} = \frac{\mathsf{W}}{\mathsf{4}} - \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_2}{\mathsf{d}_0}\right) + \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_3}{\mathsf{d}_1}\right)$$

$$\mathsf{F}_{\mathsf{4Z}} = \ \frac{\mathsf{W}}{\mathsf{4}} + \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{2}}}{\mathsf{d}_{\mathsf{0}}} \right) + \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{3}}}{\mathsf{d}_{\mathsf{1}}} \right)$$

Horizontal Application I

At the time of movement with uniform velocity or at the time of stop.

$$\mathsf{F}_{\mathsf{1Z}} = \frac{\mathsf{W}}{\mathsf{4}} + \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{2}}}{\mathsf{d}_{\mathsf{0}}}\right) - \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{3}}}{\mathsf{d}_{\mathsf{1}}}\right)$$

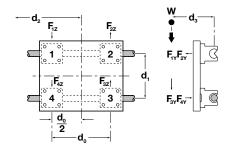

$$\mathsf{F}_{\mathsf{2Z}} = \frac{\mathsf{W}}{4} - \left(\frac{\mathsf{W}}{2} \bullet \frac{\mathsf{d}_2}{\mathsf{d}_0}\right) - \left(\frac{\mathsf{W}}{2} \bullet \frac{\mathsf{d}_3}{\mathsf{d}_1}\right)$$

$$\mathsf{F}_{3\mathsf{Z}} = \; \frac{\mathsf{W}}{4} - \left(\; \frac{\mathsf{W}}{2} \, \bullet \, \frac{\mathsf{d}_2}{\mathsf{d}_0} \; \right) \; + \; \left(\; \frac{\mathsf{W}}{2} \, \bullet \, \frac{\mathsf{d}_3}{\mathsf{d}_1} \; \right)$$

$$\mathsf{F}_{\mathsf{4Z}} = \ \frac{\mathsf{W}}{\mathsf{4}} + \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{2}}}{\mathsf{d}_{\mathsf{0}}} \right) + \ \left(\frac{\mathsf{W}}{\mathsf{2}} \bullet \frac{\mathsf{d}_{\mathsf{3}}}{\mathsf{d}_{\mathsf{1}}} \right)$$

Horizontal Application II

At the time of movement with uniform velocity or at the time of stop.


$$F_{1Y} \approx F_{4Y} = \left(\frac{W}{2} \cdot \frac{d_3}{d_1}\right)$$

$$F_{1Z} = F_{4Z} = \frac{W}{4} + \left(\frac{W}{2} \cdot \frac{d_2}{d_0}\right)$$

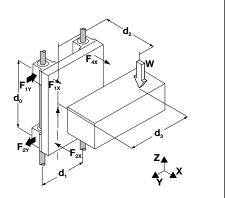
$$F_{2Z} = F_{3Z} = \frac{W}{4} - \left(\frac{W}{2} \bullet \frac{d_2}{d_0}\right)$$

Side Mounted Application

At the time of movement with uniform velocity or at the time of stop.

$$F_{1X} \approx F_{4X} = \frac{W}{2} \cdot \frac{d_2}{d_0}$$

$$F_{1Y} \approx F_{4Y} = \frac{W}{2} \cdot \frac{d_3}{d_0}$$


$$\mathsf{F}_{\mathsf{1X}} + \mathsf{F}_{\mathsf{4X}} \approx \mathsf{F}_{\mathsf{2X}} + \mathsf{F}_{\mathsf{3X}}$$

$$F_{1Y} + F_{4Y} \approx F_{2Y} + F_{3Y}$$

Vertical Application

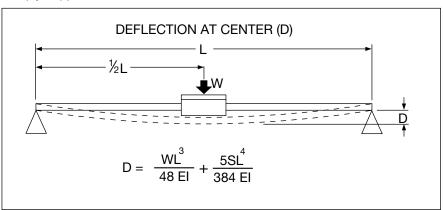
At the time of movement with uniform velocity or at the time of stop.

At the time of start and stop, the load varies because of inertia.

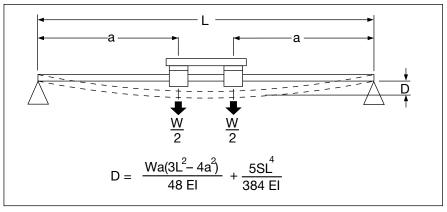
©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacemen

Website: www.thomsonballbushing.com

60 Case LinearRace Deflection


When Thomson 60 Case* LinearRace* is used in an end supported configuration it is important to ensure that 60 Case LinearRace deflections at the bearing locations are kept within performance limitations.

These equations give the deflection at the center of an end supported 60 Case LinearRace. Systems with continuous 60 Case LinearRace support are not subject to the same types of deflection.


For more detailed information of the deflection characteristics of Thomson linear motion products contact application engineering.

Values for Thomson 60 Case LinearRace							
LinearRace	Sol	id	Tubula	r			
Diameter (In)	El (lb _f •in²)	S (lb _f /in)	El (lb _f ∙in²)	S (lb _f /in)			
.187	1.8 x 10 ³	.008	_	-			
.250	5.8 x 10 ³	.014	_	_			
.375	2.9 x 10 ⁴	.031	_	_			
.500	9.2 x 10 ⁴	.055	-	_			
.625	2.3 x 10 ⁵	.086	-	_			
.750	4.7 x 10 ⁵	.125	4.6 x 10 ⁵	.075			
1.000	1.5 x 10 ⁶	.222	1.3 x 10 ⁶	.158			
1.250	3.6 x 10 ⁶	.348	-	_			
1.500	7.5 x 10 ⁶	.500	6.3 x 10 ⁶	.328			
2.000	2.4 x 10 ⁷	.890	1.9 x 10 ⁷	.542			
2.500	5.8 x 10 ⁷	1.391	4.2 x 10 ⁷	.749			
3.000	1.2 x 10 ⁸	2.003	9.3 x 10 ⁷	1.112			
4.000	3.8 x 10 ⁸	3.560	2.5 x 10 ⁸	1.558			

Simply Supported 60 Case LinearRace with One Block

Simply Supported 60 Case LinearRace with Two Blocks

LEGEND:

D = Deflection (in)

 $W = Load(lb_f)$

L = Length of unsupported 60 Case LinearRace (in)

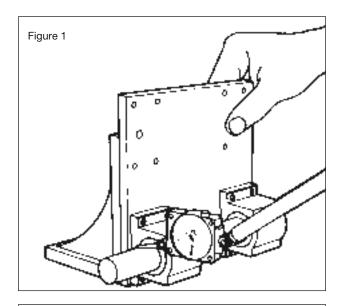
a = Distance to first bearing with carriage at center position (in)

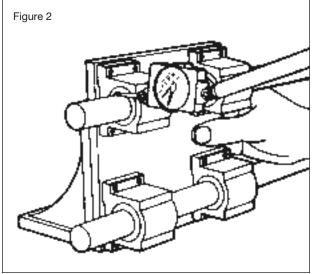
S = Unit weight of LinearRace (lb_f/in)

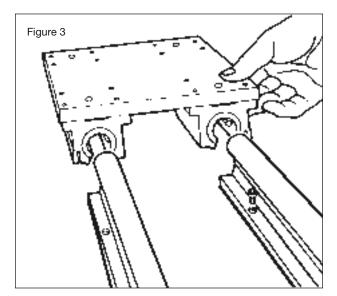
E = Modulus of Elasticity (lb_f • in²)

= Moment of inertia of area through diameter of LinearRace (in⁴)

Installation Guidelines

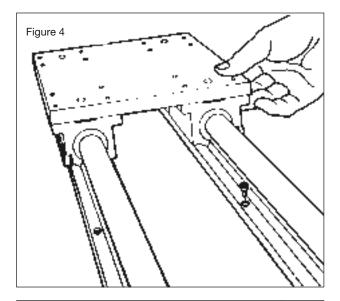

Thomson Ball Bushing bearings are manufactured to exceptionally close tolerances and offer smooth, virtually friction-free linear motion. The performance features of the bearings will only be realized, however, if care is taken during their installation.

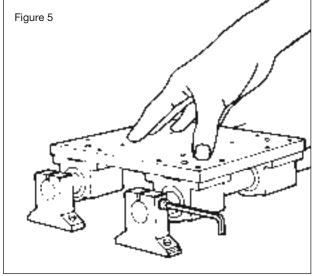

Two areas of primary importance are the bearing alignment and the 60 Case* LinearRace* parallelism. Two bearings are normally used on each 60 Case LinearRace to assure smooth operation. The housing should be carefully aligned using the method given below. If a single twin-type housing is used, these procedures are not necessary.

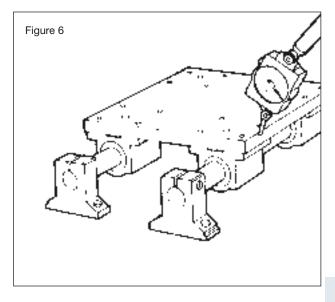

It is also necessary to assure that the height from the housing mounting surface to the 60 Case LinearRace is consistent within .001 in. Shimming may be necessary depending on the accuracy of the mounting surfaces to which the housings are bolted.

The housing can be mounted to the plate using the following procedure:

- a. Prepare the carriage plate with one side having an abutting surface.
- Mount two housings with the reference edges located against the abutting surface and tighten the hold down bolts.
 Figure 1
- Mount the second pair of housings on the opposite side of the carriage and tighten the bolts finger tight.
- d. Insert a locating 60 Case LinearRace of correct diameter and tolerance through these two housings and reference the distance from the abutting surface in [b] above, to this locating 60 Case LinearRace. Figure 2
- e. After appropriate alignment of this pair of housings, tighten bolts to secure housings to carriage.







After the carriage is properly prepared, the 60 Case* LinearRace* must be mounted to the surface. To achieve smooth, accurate motion, the 60 Case LinearRace must be mounted parallel within .001 inch over the length of the stroke. This can be done by using the following procedure:

- a. Mount one 60 Case LinearRace (either end supported or continuously supported) to the surface with mounting bolts finger tight.
- Using an aligning device such as a laser, auto-collimator or other optics, sight the 60 Case LinearRace straight and secure to mounting surface.
- After this first 60 Case LinearRace is fixed, the second 60 Case LinearRace can be positioned and held down with bolts finger tight.
- d. The carriage is then mounted and its movement will pull this second 60 Case LinearRace parallel to the first. Figures 3, 4
- e. If the second 60 Case LinearRace is then secured into position, the procedure is complete. Note that for continuously supported systems, this securing should be done when the carriage is close to the bolts. For end supported systems, the securing should be done when the carriage is at the ends of the 60 Case LinearRace. Figure 5
- f. An additional check can be done at this time to assure that the carriage is tracking correctly (i.e., that the carriage edge is moving parallel to the 60 Case LinearRace). An indicator touching the carriage edge should not vary, as the carriage is moved along the 60 Case LinearRace. Figure 6

Application Tips

Two Ball Bushing* Bearings per 60 Case* LinearRace* When using the Super Smart, Super or Precision Steel Ball Bushing bearing it is recommended that two Ball Bushings bearings be used on each 60 Case LinearRace. This will assure

system stability as well optimum performance. If envelope constraints prohibit the use of two Ball Bushing bearings per 60 Case LinearRace contact application engineering.

Ball Bushing Bearing Spacing vs. 60 Case LinearRace **Spacing**

In parallel 60 Case LinearRace applications, the ratio of 60 Case LinearRace spacing to Ball Bushing bearing spacing should always be less than three to one. This will assure a constant breakaway and operating friction.

60 Case LinearRace Parallelism

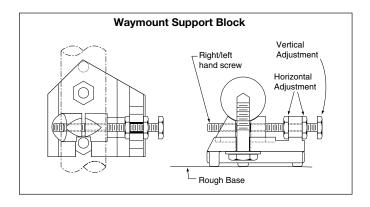
In most applications the maximum acceptable out of parallelism condition is .001 inch over the entire full system length. In applications where preload is present (such as when using Die Set Ball Bushing bearings) a closer 60 Case LinearRace parallelism is recommended.

Three or More Parallel 60 Case LinearRace ways When aligning two 60 Case LinearRace ways parallel great care is required to assure a parallelism within .001 inch over the entire length of travel. When aligning multiple 60 Case LinearRace ways, parallelism between each 60 Case LinearRace should be held within the .001 inch specification.

Measuring 60 Case LinearRace Alignment

Methods for establishing or checking 60 Case LinearRace straightness and parallelism depends on the accuracy required. Lasers, collimator or alignment telescopes can be used for very precise applications, while accurate levels, straight edges, micrometers and indicators will suffice for the majority of applications which have less stringent accuracy requirements.

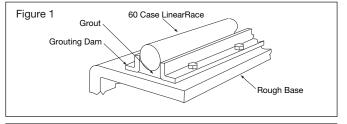
Installation of Super and Precision Steel Adjustable Type **Ball Bushing Bearings**

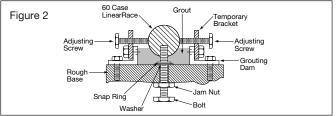

When installing a Super Ball Bushing bearing into a slotted adjustable housing, the bearing plate should not align with the adjustment slot. When installing a Precision Steel Adjustable Type Ball Bushing bearing into a slotted adjustable housing, the bearing adjustment slot should be 90° to the pillow block adjustment slot. These important steps will assure accurate bearing adjustment.

Access for Lubrication

Thomson Super Smart and Super Ball Bushing Pillow Blocks are equipped with either an oil lubrication fitting or a 1/4-28 access for lubrication. To use the oil fitting simply insert a lubrication device into the oil nipple by depressing the spring loaded ball. The ¹/₄-28 tapped hole is a standard size for most grease and lubrication fittings. Simply install the lubrication fitting of your choice and it is ready for immediate use. Super Ball Bushing Pillow blocks in sizes .250 through .500 inch diameter are equipped with oil lubrication fittings. Super Ball Bushing pillow blocks in sizes .625 inch and above and all Super Smart Ball Bushing Pillow Blocks are equipped with a 1/4-28 access for lubrication.

Waymount Support Block for Roundway Bearing Installation


Standard Waymount LinearRace Support Blocks provide 60 Case LinearRace adjustment in both the horizontal and vertical direction. This product reduces installation time dramatically, while assuring precise 60 Case LinearRace alignment. This versatile design allows the Waymount support to be mounted vertically or horizontally and in many different Roundway bearing applications. The number of Waymounts to be used is based on the maximum allowable 60 Case LinearRace deflection between supports and the accuracy required. Ordinarily indicators, sensitive levels and straight edges are adequate for most alignment conditions.



RoundWay* Bearing/60 Case LinearRace **Installation Using Grout**

Grouting is a very simple method of mounting a 60 Case LinearRace on almost any kind of surface, smooth or uneven. Grouting can also be used in conjunction with standard Waymount LinearRace support blocks or other 60 Case LinearRace supports to obtain maximum rigidity. Dams are fastened to the bed parallel to the 60 Case LinearRace which is then aligned with its mating 60 Case LinearRace (Figure 1). A compound, such as Thomson Waystone*, is then poured under and around the lower circumference of the 60 Case LinearRace. This dries quickly forming a solid support of high compressive strength (over 12,000 psi) without affecting the initial straightness of the LinearRace.

If the bearing arrangement permits the grout to flow substantially around the circumference of the 60 Case LinearRace and side loads are light, Waymount LinearRace supports or other hold down bolts along the length made be unnecessary (Figure 2). Just one support at each end of the 60 Case LinearRace will usually provide final alignment and hold the 60 Case Linear-Race in position for grouting. If the length to diameter ratio is large, Waymount LinearRace supports should be equally spaced to minimize 60 Case LinearRace deflection. Grout should always be in direct contact with the surface of the bed or whatever base member provides primary rigidity and support.

©2003 Danaher Motion. Printed in the U.S.A. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement

60 Case LinearRace Shafting Specifications

Thomson 60 Case* LinearRace* provides the inner race for Thomson Ball Bushing bearings. All 60 Case LinearRace is manufactured to extremely close tolerances for surface finish, roundness, hardness and straightness to provide long service life with reduced maintenance.

Specifications:

Hardness: HRC 60 minimum

Surface Finish: 12 R_a microinch

Roundness: 80 millionths of an inch

Straightness: Standard—.001 inch per foot cumulative (.002 TIR) Special—.0005 inch per foot

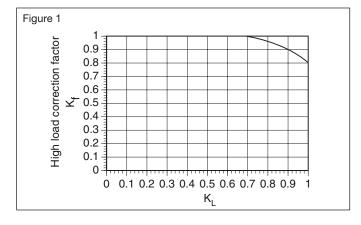
cumulative (.001 TIR)

Length Tolerance: Standard +/-.030 inch for diameters up to

2 inches and +/-.060 for diameters 2 inch and over. Special length tolerances avail-

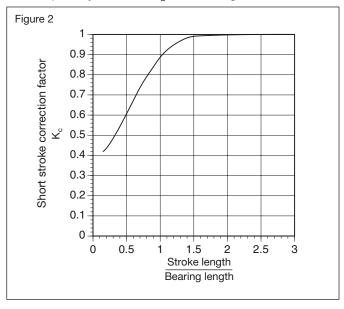
able.

Chamfer: Standard chamfer on diameters up to 1


inch is .030 x 45° and .060 x 45° for

diameters larger than 1 inch.

Tensile Strength: Case: 335,000 psi, Core: 100,000 psi **Yield Strength:** Case: 250,000 psi, Core: 75,000 psi


Load Factor

In applications where the applied load exceeds 70% of the maximum dynamic load capacity of Super Smart Ball Bushing bearings, a high load correction factor $K_{\rm f}$ must be applied to $W_{\rm R}$ when calculating travel life. (Figure 1)

Short Stroke Applications

In applications when the stroke length is short, the life of the shaft is shorter than that of the Ball Bushing bearing. In short stroke applications, the required dynamic load capacity must be multiplied by the factor $K_{\rm C}$ found on Figure 2.

Material engineering specifications

Ball Bushing* bearing materials.

The following is a tabulation of the materials used for the components of the various types of Ball Bushing bearings

Туре	Outer Sleeve	Ball Retainers	Bearing Plates	Balls	End Rings
SSU, SUPER Ball Bushing Bearings	Delrin	Delrin	8620	Chrome Steel	None
Series A, B, XA, ADJ, OPN and DS	E52100	Steel	_	Chrome Steel	Steel
Stainless Steel (SS) to 1" I.D. Series A, XA, ADJ and OPN	440A	Type 305SS	_	440C	Type 303SS
Series INST-SS	440A	Brass	_	440C	None
Series XR	Reinforced Nylon	Reinforced Polyester	8620	Chrome Steel	Steel

Corrosion resistance

Super Ball Bushing bearings can be supplied corrosion resistant with hard chromeplated bearing plates and stainless steel balls. Load capacity will be 70% of regular Super Ball Bushing bearings. To order, add suffix CR to Super Ball Bushing bearingpart number. Contact factory for price and delivery information.

For limited protection against atmospheric corrosion, large sizes (over 1" diameter) of series A, XA, ADJ, OPN and B, Ball Bushing bearings can be supplied with stainless steel balls and black oxide sleeve. Load capacity will be 70% of regular steel bearings. To order, add suffix SP to bearing part number. Contact factory for price and delivery.

Stainless steel Ball Bushing bearings

Available entirely of stainless steel. They are identified by the suffix "SS" following the part number (i.e. XA-81420-SS).

Sizes available:

Series A and XA	to and including 1"
Series ADJ and OPN	1/2", 5/8", 3/4" and 1"

Ball Bushing bearings with nylon balls

For extremely quiet operation, Ball Bushing bearings fitted with Nylon balls can be supplied in sizes 1/2" and larger. For estimating purposes laod ratings should be considered about 10% of those listed for Ball Bushing bearings with steel balls. Prices and other information available on request.

60 Case* shafts -hardened and ground

Material Type	AISI	Rockwell "C"
Solid 60 Case	Bearing-quality, high carbon alloy steeel	60 min
Tubular 60 Case	Bearing-quality, high carbon alloy steel	58 min
Solid Stainless Steel	440C Stainless	50 min

Maximum recommended operating temperatures for Ball Bushing bearings

The following are general recommendations. For additional information or more specific recommendations please contact factory with full application details.

Type of Ball Bushing bearings	Maximum Operating Temperature	Load Rating at Maximum Operating Temperature as % of Catalog Load Rating
SSU, Super & Series XR	185°F	100%
Series A, B, XA, ADJ & OPN	500°F†	70%
Series A-SS, XA-SS, ADJ-SS, OPN-SS & INST-SS Stainless Steel (through 1" I.D.)	600°F†	60%

'Maximum operating temperature for these two series for *full catalog load* rating is 300°F.

Note: Type PB-A, PB-ADJ, and PBO-OPN pillow blocks are assembled with Delrin plastic seal covers with a maximum operature at 185°F.

Pillow blocks and shaft supports

Part Type	Material
Type SSUPB, SSUTWN, SPB & TWN pillow blocks	Type 6061-T6511 Aluminum
Type PB pillow blocks	Ductile Iron
Type PBO & XPBO Pillow blocks	Malleable/Ductile Iron
Type SR shaft support rails (std. lgth. 24")	Type 6061-T6511 Aluminum
Type LSR shaft support rails	1010 Steel
Type XSR shaft support rails (std. lgth. 24")	Ductile Iron
Type SB shaft support blocks	Malleable Iron ^{††}
Waymount shaft supports	Malleable Iron Base with steel adjustment elements

 $^{^{\}scriptsize\textrm{ti}}\textsc{Type}$ 6061-T6511 Aluminum for 1/4" and 3/8" sizes only

Engineering Conversion

QUANTITY	CONVENTIONAL		SI UNIT	CONVERSION FACTORS	
QOANTITI	Inch Unit	Metric Unit (MKS)	SIONII	CONVENSION FACTORS	
LENGTH	Inch in.	Meter m	Metre m	1 in. = 25.4 mm 1 mm = 0.03937 in. 1 m = 3.2808 ft. 1 ft. = 0.3048 m	
AREA	Square Inch in.²	Square Meter m²	Square Metre m²	1 in. ² = 6.4516 cm ² 1 cm ² = 0.155 in. ² 1 m ² = 10.764 ft ² 1 ft. ² = 0.092903 m ²	
MASS	Pound lb _m	Kilogram kg	Kilogram kg	1 lb _m = 0.45359237 kg 1 kg = 2.2046 lb	
FORCE	Pound Force	Kilogram Force kg _f	Newton N	$\begin{array}{lll} 1 \ lb_f &= 0.45359237 \ kg_f \\ 1 \ lb_f &= 4.44822 \ N \\ 1 \ kg_f &= 2.2046 lbf \\ 1 \ kg_f &= 9.80665 \ N \\ 1 \ N &= 0.1019716 \ kg_f \\ 1 \ N &= 0.224809 \ lb_f \end{array}$	
STRESS or PRESSURE	Pounds per square inch lb_r/in. ²	Kilograms per square meter kg _f /m²	Pascal Pa	$\begin{array}{lll} 1 \text{ MPa} &= 10^{8} \text{ N/m}^{2} = \text{N/mm}^{2} \\ 1 \text{ kPa} &= 10^{3} \text{ N/m}^{2} \\ 1 \text{ lb}_{\text{f}}/\text{inch}^{2} &= 0.070307 \text{ kg}_{\text{f}}/\text{cm}^{2} \\ 1 \text{ lb}_{\text{f}}/\text{inch}^{2} &= 7.0307 \times 10^{-4} \text{ kg}_{\text{f}}/\text{mm}^{2} \\ 1 \text{ lb}_{\text{f}}/\text{inch}^{2} &= 6.8947 \times 10^{-3} \text{ N/mm}^{2} \text{ (MPa)} \\ 1 \text{ kg}_{\text{f}}/\text{cm}^{2} &= 14.2233 \text{ lb}_{\text{f}}/\text{in}.^{2} \\ 1 \text{ kg}_{\text{f}}/\text{cm}^{2} &= 9.80665 \times 10\text{-}2 \text{ N/mm}^{2} \text{ (MPa)} \end{array}$	
TORQUE or WORK	Inch Pounds Ib_f-in.	Kilogram Meters kg_f-m	Newton- Metres Nm	1 lbf-in. = $1.1521 \text{ kg}_f\text{-cm}$ 1 kg _f -cm = $0.8679 \text{ lb}_f\text{-in}$. 1 lb _f -in. = 0.1129848 Nm 1 kg _f -m = 9.80665 Nm 1 kg _f -cm = $9.80665 \times 10^2 \text{ Nm}$ 1 Nm = $8.85 \text{ lb}_f\text{-in}$. 1 Nm = $10.19716 \text{ kg}_f\text{-cm}$	
POWER	Foot pound per minute Ib _f -ft./min.	Force per second kg_f-m/s	Newton Metre per second Nm/s	$\begin{array}{lll} 1 \text{ kW} &= 1000 \text{Nm/s} \\ 1 \text{ kW} &= 60,000 \text{ Nm/s} \\ 1 \text{ kW} &= 44,220 \text{ lb}_{\text{l}}\text{-ft./min.} \\ 1 \text{ kW} &= 1.341 \text{ hp} \\ 1 \text{ hp} &= 75 \text{ kg}_{\text{l}}\text{-m/s} \\ 1 \text{ hp} &= 44,741 \text{ Nm/min.} \\ 1 \text{ hp} &= 33,000 \text{ lb}_{\text{l}}\text{-ft.min.} \\ 1 \text{ hp} &= 0.7457 \text{ kW} \end{array}$	
VELOCITY	Feet per second ft./s	Meters per second m/s	Meters per second m/s	1 ft./sec. = 0.3048 m/s 1 in./sec. = 2.54 cm/s 1 ft./sec. = 0.00508 m/s 1 mile/hr. = 0.44704 m/s 1 km/hr. = 0.27777 m/s 1 mile/hr = 1.609344 km/hr.	
ACCELERA- TION	Feet per second squared ft./s²	Meters per second squared m/s²	Metres per second squared m/s²	1 ft./s² = 0.3048 m/s²	

Danaher Motion Linear Motion Systems

As part of the Danaher Motion family, our mechanical and electro-mechanical product offerings include standard and custom linear bearings, shafting, linear guides, ball and lead screws, gearheads, linear actuators, slide tables and systems, precision balls, molded products, resolvers, brakes and clutches, AC and DC adjustable speed drives, stepper and servo motors. Our products are applied worldwide throughout a variety of motion applications in the machine tool, medical, automotive, robotics, industrial, aerospace, office equipment and mobile off-highway markets. Our highly recognized brand names include: Thomson¹⁰¹, Thomson BSA¹⁰¹, Micron¹⁰¹, Harowe¹⁰¹, Deltran PT¹⁰¹, Superior Electric¹⁰¹ and SECO¹⁰¹.

* Trademark of Danaher Motion. DANAHER MOTION is registered in the U.S. Patent and Trademark Office and in other countries. The specifications in this publication are believed to be accurate and reliable. However, it is the responsibility of the product user to determine the suitability of Thomson products for a specific application. While defective products will be replaced without charge if promptly returned, no liability is assumed beyond such replacement. ©2003 Danaher Motion. XXX XXK KP 10-3-03 200304-01.qxd RRLB-01-04-A100

FOR IMMEDIATE ASSISTANCE:

Internet:	www.DanaherLinear.com		In Europe:	Phone:	+46 (0) 44 24 67 00	
				Fax:	+46 (0) 44 24 40 85	
In USA, Canada	Phone:	1-800-554-8466		E-mail:	helpdesk@tollo.com	
or Mexico:	Fax:	1-800-445-0329	or write:	Danaher Moti	ion	
	E-mail: linear@danahermotion.com Literature: litreguest@danahermotion.com			Tollo Linear AB		
				Box 9053		
or write:	Danaher Motion	1		SE-291 09 Kr	ristianstad Sweden	
	43-45 Channel	Drive				
	Port Washington, NY 11050 USA		or	Phone:	+49 (0) 70 22 504-0	
				Fax:	+49 (0) 70 22 541-68	
				E-mail:	Kontakt@warner-electric.de	
In UK:	Phone:	+ (44) 1271 334 500	or write:	Warner Electr	ric GmbH	
	Sales Fax:	+ (44) 1271 334 502		Nürtinger Stra	asse 70	
	E-mail:	information@tiblmail.com		D-72649 Wol	fschlugen Germany	
or write:	Danaher Linear	Motion Systems				
	Fishleigh Road,	Roundswell	Elsewhere:	Phone:	1 (516) 883-8937	
	Barnstaple			Fax:	1 (516) 883-7109	
	FX31 3ΠΔ ΠΚ					